1. bookVolume 21 (2019): Issue 2 (June 2019)
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year
Open Access

Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review.

Published Online: 28 Jun 2019
Volume & Issue: Volume 21 (2019) - Issue 2 (June 2019)
Page range: 31 - 37
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year

1. Rostrup-Nielsen, J.R. (2004) Fuels and energy for the future: The role of catalysis Catal Rev – Sci Eng, https://doi.org/10.1081/CR-200036716.10.1081/CR-200036716Open DOISearch in Google Scholar

2. Turner, J.A. (2004) Sustainable hydrogen production Science (80-), https://doi.org/10.1126/science.1103197.10.1126/.1103197Open DOISearch in Google Scholar

3. Samojeden, B. (2018). The current and future trends in chemical CO2 utilization In: Contemp. Probl. Power Eng. Environ. Prot. 2017 222–226.Search in Google Scholar

4. Fish, J.D. & Hawn, D.C. (1987). Closed Loop Thermochemical Energy Transport Based on CO2 Reforming of Methane: Balancing the Reaction Systems J. Sol. Energy Eng. 109(3) 215, https://doi.org/10.1115/1.3268209.10.1115/1.3268209Open DOISearch in Google Scholar

5. Dry, M.E. (2002). The Fischer–Tropsch process: 1950–2000 Catal Today 71(3–4) 227–241, https://doi.org/10.1016/S0920-5861(01)00453-9.10.1016/S0920-5861(01)00453-9Open DOISearch in Google Scholar

6. Nguyen, T.H., Łamacz, A., Krztoń, A., Liszka, B., & Djéga-Mariadassou, G. (2016). Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst III. Steady state activity of methane total oxidation, dry reforming, steam reforming and partial oxidation. Sequences of elementary steps Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2015. in Google Scholar

7. Nguyen, T.H., Łamacz, A., Krztoń, A., Ura, A., Chałupka, K., Nowosielska, M., Rynkowski, J. & Djéga-Mariadassou, G. (2015). Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst II: Global kinetics of methane total oxidation, dry reforming and partial oxidation Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2014. in Google Scholar

8. Nguyen, T.H., Łamacz, A., Beaunier, P., Czajkowska, S., Domański, M., Krztoń, A., Van Le, T. & Djéga-Mariadassou, G. (2014). Partial oxidation of methane over bifunctional catalyst I. In situ formation of Ni0/La2O3during temperature programmed POM reaction over LaNiO3perovskite Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2014. in Google Scholar

9. Nguyen, T.H., Łamacz, A., Krztoń, A. & Djéga-Mariadassou, G. (2016). Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst IV: Simulation of methane total oxidation, dry reforming and partial oxidation using the Quasi-Steady State Approximation Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2016. in Google Scholar

10. Ghoneim, S.A., El-Salamony, R.A. & El-Temtamy, S.A. (2016). Review on Innovative Catalytic Reforming of Natural Gas to Syngas World J Eng Technol, https://doi.org/10.4236/wjet.2016.41011.10.4236/wjet.2016.41011Search in Google Scholar

11. Rathod, V. & Bhale, P.V. (2014). Experimental investigation on biogas reforming for syngas production over an alumina based nickel catalyst Energy Procedia, https://doi.org/10.1016/j.egypro.2014. DOISearch in Google Scholar

12. Buelens, L.C., Galvita, V.V., Poelman, H., Detavernier, C. & Marin, G.B. (2016). Super-dry reforming of methane intensifies CO2 utilization via le Chatelier’s principle Science (80-), https://doi.org/10.1126/science.aah7161.10.1126/.aah7161Open DOISearch in Google Scholar

13. le Saché, E., Pastor-Pérez, L., Watson, D., Sepúlveda-Escribano, A. & Reina, T.R. (2018). Ni stabilised on inorganic complex structures: superior catalysts for chemical CO2recycling via dry reforming of methane Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2018. DOISearch in Google Scholar

14. Pappacena, A., Razzaq, R., de Leitenburg, C., Boaro, M., & Trovarelli, A. (2018). The Role of Neodymium in the Optimization of a Ni/CeO2 and Ni/CeZrO2 Methane Dry Reforming Catalyst Inorganics, https://doi.org/10.3390/inorganics6020039.10.3390/inorganics6020039Open DOISearch in Google Scholar

15. Pakhare, D. & Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts Chem Soc Rev, https://doi.org/10.1039/c3cs60395d.10.1039/c3cs60395d24504089Open DOISearch in Google Scholar

16. Littlewood, P., Xie, X., Bernicke, M., Thomas, A. & Schomäcker, R. (2015). Ni0.05Mn0.95O catalysts for the dry reforming of methane Catal Today, https://doi.org/10.1016/j.cattod.2014. in Google Scholar

17. Oyama, S.T., Hacarlioglu, P., Gu, Y., & Lee, D. (2012). Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors Int J Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2011. DOISearch in Google Scholar

18. Ginsburg, J.M., Piña, J., El Solh, T. & De Lasa, H.I. (2005). Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models Ind. Eng. Chem. Res., https://doi.org/10.1021/ie0496333.10.1021/ie0496333Open DOISearch in Google Scholar

19. Usman, M., Wan Daud, WMA. & Abbas, HF. (2015). Dry reforming of methane: Influence of process parameters -A review Renew Sustain Energy Rev., https://doi.org/10.1016/j.rser.2015. DOISearch in Google Scholar

20. Luyben, W.L. (2014). Design and control of the dry methane reforming process Ind. Eng. Chem. Res., https://doi.org/10.1021/ie5023942.10.1021/ie5023942Open DOISearch in Google Scholar

21. Harshini, D., Kwon, Y., Han, J., Yoon, S.P., Nam, S.W. & Lim, T.H. (2010). Suppression of carbon formation in steam reforming of methane by addition of Co into Ni/ZrO2 catalysts Korean J. Chem. Eng., https://doi.org/10.2478/s11814-010-0095-9.10.2478/s11814-010-0095-9Open DOISearch in Google Scholar

22. Hu, D., Gao, J., Ping, Y., Jia, L., Gunawan, P., Zhong, Z., Xu, G., Gu, F. & Su, F. (2012). Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production Ind. Eng. Chem. Res., https://doi.org/10.1021/ie300049f.10.1021/ie300049fOpen DOISearch in Google Scholar

23. Rostrup-Nielsen, JR. (1984). Catalytic Steam Reforming Catalysis, https://doi.org/10.1007/978-3-642-93247-2_1.10.1007/978-3-642-93247-2_1Open DOISearch in Google Scholar

24. Rostrup-Nielsen, JR. & Sehested, J. (2003). Steam Reforming for Hydrogen. The Process and the Mechanism ACS Div. Fuel. Chem. Prepr., https://doi.org/10.1021/ma0001180.10.1021/0001180Open DOISearch in Google Scholar

25. Choi, J.S., Moon, K.I., Kim, Y.G., Lee, J.S., Kim, C.H. & Trimm, D.L. (1998). Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts Catal. Letters 52(1–2) 43–47, https://doi.org/10.1023/A:1019002932509.10.1023/A:1019002932509Open DOISearch in Google Scholar

26. Wang, C., Sun, N., Zhao, N., Wei, W., Sun, Y., Sun, C., Liu, H. & Snape, CE. (2015). Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions Fuel, https://doi.org/10.1016/j.fuel.2014. DOISearch in Google Scholar

27. Tarasov, A., Düdder, H., Mette, K., Kühl, S., Kähler, K., Schlögl, R., Muhler, M. & Behrens, M. (2014). Investigation of coking during dry reforming of methane by means of thermogravimetry Chemie-Ingenieur-Technik, https://doi.org/10.1002/cite.201400092.10.1002/cite.201400092Open DOISearch in Google Scholar

28. Chen, D., Lødeng, R., Anundskås, A., Olsvik, O. & Holmen, A. (2001). Deactivation during carbon dioxide reforming of methane over Ni catalyst: Microkinetic analysis Chem. Eng. Sci., https://doi.org/10.1016/S0009-2509(00)00360-2.10.1016/S0009-2509(00)00360-2Open DOISearch in Google Scholar

29. Muradov, N. & Smith, F. (2008). Thermocatalytic conversion of landfill gas and biogas to alternative transportation fuels Energy and Fuels, https://doi.org/10.1021/ef8000532.10.1021/ef8000532Open DOISearch in Google Scholar

30. Osazuwa, O.U., Setiabudi, H.D., Rasid, R.A. & Cheng, C.K. (2017). Syngas production via methane dry reforming: A novel application of SmCoO3 perovskite catalyst J. Nat. Gas. Sci. Eng., https://doi.org/10.1016/j.jngse.2016. DOISearch in Google Scholar

31. Erdogan, B., Arbag, H. & Yasyerli, N. (2018). SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane Int J Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017. DOISearch in Google Scholar

32. Akri, M., Achak, O., Granger, P., Wang, S., Batiot-Dupeyrat, C. & Chafik, T. (2018). Autothermal reforming of model purified biogas using an extruded honeycomb monolith: A new catalyst based on nickel incorporated illite clay promoted with MgO J Clean Prod, https://doi.org/10.1016/j.jclepro.2017. DOISearch in Google Scholar

33. Wei, Q., Yang, G., Gao, X., Yamane, N., Zhang, P., Liu, G. & Tsubaki, N. (2017). Ni/Silicalite-1 coating being coated on SiC foam: A tailor-made monolith catalyst for syngas production using a combined methane reforming process Chem. Eng. J., https://doi.org/10.1016/j.cej.2017. DOISearch in Google Scholar

34. Chang, J.S., Park, S.E. & Chon, H. (1996). Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts Appl. Catal. A Gen. https://doi.org/10.1016/0926-860X(96)00150-0.10.1016/0926-860X(96)00150-0Open DOISearch in Google Scholar

35. Estephane, J., Aouad, S., Hany, S., El Khoury, B., Gennequin, C., El Zakhem, H., El Nakat, J., Aboukaïs, A. & Abi Aad, E. (2015). CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study Int. J. Hydrogen Energy 40(30) 9201–9208.10.1016/j.ijhydene.2015.05.147Search in Google Scholar

36. González, A.R., Asencios, Y.J.O., Assaf, E.M. & Assaf, J.M. (2013). Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2013. DOISearch in Google Scholar

37. Dębek, R., Motak, M., Galvez, M.E., Da Costa, P. & Grzybek, T. (2017). Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition React Kinet Mech Catal, https://doi.org/10.1007/s11144-017-1167-1.10.1007/s11144-017-1167-1Open DOISearch in Google Scholar

38. Dębek, R., Galvez, M.E., Launay, F., Motak, M., Grzybek, T. & Da Costa, P. (2016). Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2016. DOISearch in Google Scholar

39. Dębek, R., Motak, M., Galvez, M.E., Grzybek, T. & Da Costa, P. (2018). Promotion effect of zirconia on Mg(Ni, Al) O mixed oxides derived from hydrotalcites in CO2 methane reforming Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2017. DOISearch in Google Scholar

40. Dębek, R., Radlik, M., Motak, M., Galvez, M.E., Turek, W., Da Costa, P. & Grzybek, T. (2015). Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – On the effect of basicity Catal Today, https://doi.org/10.1016/j.cattod.2015. DOISearch in Google Scholar

41. Liu, H., Wierzbicki, D., Debek, R., Motak, M., Grzybek, T., Da Costa, P. & Gálvez, ME. (2016). La-promoted Nihydrotalcite-derived catalysts for dry reforming of methane at low temperatures Fuel, https://doi.org/10.1016/j.fuel.2016. DOISearch in Google Scholar

42. Gao, X., Liu, G., Wei, Q., Yang, G., Masaki, M., Peng, X., Yang, R. & Tsubaki, N. (2017). Carbon nanofibers decorated SiC foam monoliths as the support of anti-sintering Ni catalyst for methane dry reforming Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017. DOISearch in Google Scholar

43. de Souza, V.P., Costa, D., dos Santos, D., Sato, A.G. & Bueno J.M.C. (2012). Pt-promoted α-Al2O3-supported Ni catalysts: Effect of preparation conditions on oxi-reduction and catalytic properties for hydrogen production by steam reforming of methane Int J Hydrogen Energy 37(13) 9985–9993, https://doi.org/10.1016/J.IJHYDENE.2012. DOISearch in Google Scholar

44. Jabbour, K., Massiani, P., Davidson, A., Casale, S. & El Hassan, N. (2017). Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM) Appl Catal B Environ, https://doi.org/10.1016/j.apcatb.2016. DOISearch in Google Scholar

45. Bengaard, H.S., Nørskov, J.K., Sehested, J., Clausen, B.S., Nielsen, L.P., Molenbroek, A.M. & Rostrup-Nielsen, J.R. (2002). Steam reforming and graphite formation on Ni catalysts J. Catal., https://doi.org/10.1006/jcat.2002.3579.10.1006/jcat.2002.3579Open DOISearch in Google Scholar

46. Bej, B., Pradhan, N.C. & Neogi, S. (2013). Production of hydrogen by steam reforming of methane over alumina supported nano-NiO / SiO2 catalyst Catal. Today, https://doi.org/10.1016/j.cattod.2012. DOISearch in Google Scholar

47. Zhang, Y., Wang, W., Wang, Z., Zhou, X., Wang, Z. & Liu, C.J. (2015). Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio Catal. Today 256, 130–136, https://doi.org/10.1016/J.CATTOD.2015. DOISearch in Google Scholar

48. Nieva, M.A., Villaverde, M.M., Monzón, A., Garetto T, F. & Marchi, A.J. (2014). Steam-methane reforming at low temperature on nickel-based catalysts Chem. Eng. J., https://doi.org/10.1016/j.cej.2013. DOISearch in Google Scholar

49. Amjad, UES., Vita, A., Galletti, C., Pino, L. & Specchia, S. (2013). Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts Ind. Eng. Chem. Res., https://doi.org/10.1021/ie400679h.10.1021/ie400679hOpen DOISearch in Google Scholar

50. Amjad, U.E.S., Gonçalves Lenzi, G., Camargo Fernandes-Machado, N.R. & Specchia, S. (2015). MgO and Nb oxides used as supports for Ru-based catalysts for the methane steam reforming reaction Catal. Today, https://doi.org/10.1016/j.cattod.2015. DOISearch in Google Scholar

51. Roy, P.S., Park, N.K. & Kim, K. (2014). Metal foam-supported Pd-Rh catalyst for steam methane reforming and its application to SOFC fuel processing Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2014. DOISearch in Google Scholar

52. Hiramitsu, Y., Demura, M., Xu, Y., Yoshida, M. & Hirano, T. (2015). Catalytic properties of pure Ni honeycomb catalysts for methane steam reforming Appl. Catal. A. Gen., https://doi.org/10.1016/j.apcata.2015. DOISearch in Google Scholar

53. Vita, A., Italiano, C., Ashraf, M.A., Pino, L. & Specchia, S. (2018). Syngas production by steam and oxy-steam reforming of biogas on monolith-supported CeO2-based catalysts Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017. DOISearch in Google Scholar

54. Khani, Y., Shariatinia, Z. & Bahadoran, F. (2016). High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane Chem. Eng. J., https://doi.org/10.1016/j.cej.2016. DOISearch in Google Scholar

55. Kho, E.T., Lovell, E., Wong, R.J., Scott, J. & Amal, R. (2017). Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low temperature steam reforming of methane Appl. Catal. A. Gen., https://doi.org/10.1016/j.apcata.2016. DOISearch in Google Scholar

56. Lim, Z.Y., Wu, C., Wang, W.G., Choy, K.L. & Yin, H. (2015). Porosity effect on ZrO2 hollow shells and hydrothermal stability for catalytic steam reforming of methane J. Mater. Chem. A., https://doi.org/10.1039/c5ta07015e.10.1039/c5ta07015eOpen DOISearch in Google Scholar

57. Hagen, J. (2015). Industrial catalysis: A practical approach Ind. Catal. A Pract. Approach., https://doi.org/10.1002/9783527684625.10.1002/9783527684625Open DOISearch in Google Scholar

58. Öhlmann, G. (1999) Handbook of Heterogeneous Catalysis Zeitschrift für Phys. Chemie, https://doi.org/10.1524/zpch.1999.208.Part_1_2.274.10.1524/zpch.1999.208.Part_1_2.274Open DOISearch in Google Scholar

Recommended articles from Trend MD