Open Access

Preparation and Up-Conversion Luminescence of Yb3+/Er3+/GZO Ceramics


Cite

1. Auzel, F. (2004). Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139-174. DOI: 10.1021/cr020357g.10.1021/cr020357g14719973Open DOISearch in Google Scholar

2. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. (2014). Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114(10), 5161-5214. DOI: 10.1021/cr400425h.10.1021/cr400425h403935224605868Search in Google Scholar

3. Yan, S.Q. (2015). Synthesis and luminescence of BiPO4:Tb3+ nanowires by a hydrothermal process. Mater. Manuf. Process. 30, 591-594. DOI: 10.1080/10426914.2014.994777.10.1080/10426914.2014.994777Open DOISearch in Google Scholar

4. Liu, Z.L., Zhou, H.Y., Du, L.P. & Yang, H. (2012). Synthesis and luminescence properties of Y2O3:Tb3+, Dy3+. Mater. Manuf. Process. 27 (12), 1306-1309. DOI: 10.1080/10426914.2012.663146.10.1080/10426914.2012.663146Open DOISearch in Google Scholar

5. Camargo, A.S.S., Possatto, J.F., Nunes, L.A.D.O., Botero, É.R., Andreeta, É.R.M., Garcia, D. & Eiras, J.A. (2006). Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics. Solid State Commun. 137(1-2), 1-5. DOI: 10.1016/j.ssc.2005.10.020.10.1016/j.ssc.2005.10.020Open DOISearch in Google Scholar

6. Pan, W., Zhao, J. & Chen, Q. (2015). Fabricating upconversion fl uorescent probes for rapidly sensing foodborne pathogens. J. Agric. Food Chem. 63 (36), 8068-8074. DOI: 10.1021/acs.jafc.5b02331.10.1021/acs.jafc.5b0233126308972Open DOISearch in Google Scholar

7. Reszczyńska, J., Grzyb, T., Sobczak, J.W., Lisowski, W., Gazda, M., Ohtani, B. & Zaleska, A. (2015). Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B 163, 40-49. DOI: 10.1016/j. apcatb.2014.07.010.10.1016/j.apcatb.2014.07.010Open DOISearch in Google Scholar

8. Rony, S.K., Jörg, B., Jordan, A.H., Alexandre, H, Fan, D., Felix, N.C. (2012). Upconversion-powered photoelectrochemistry. Rsc Adv. 48, 209-211. DOI: 10.1039/c1cc16015j.10.1039/C1CC16015J22080384Search in Google Scholar

9. Martín-Rodríguez, R., Fischer, S., Ivaturi, A., Froehlich, B., Krämer, K.W., Goldschmidt, J.C., Richards, B.S. & Meijerink, A. (2013). Highly effi cient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications. Chem. Mater. 25(9), 1912-1921. DOI: 10.1021/cm4005745.10.1021/cm4005745Open DOISearch in Google Scholar

10. Yao, C., Wang, P., Zhou, L., Wang, R., Li, X., Zhao, D. & Zhang, F. (2014). Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for effi cient bioimaging. Anal. Chem. 86(19), 9749-9757. DOI: 10.1021/ ac5023259.10.1021/ac502325925075628Search in Google Scholar

11. Wu, X., Chen, G., Shen, J., Li, Z., Zhang, Y. & Han, G. (2015). Upconversion nanoparticles: a versatile solution to multiscale biological imaging. Bioconjug ate Chem. 26(2), 166-175. DOI: 10.1021/bc5003967.10.1021/bc5003967433580925254658Open DOISearch in Google Scholar

12. Li, W., Wang, J., Ren, J. & Qu, X. (2014). Near-infrared upconversion controls photocaged cell adhesion. J. Am. Chem. Soc. 136(6), 2248-2251. DOI: 10.1021/ja412364m.10.1021/ja412364m24467474Open DOISearch in Google Scholar

13. Dou, Q., Idris, N.M. & Zhang, Y. (2013). S andwich- -structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomater. 34(6), 1722-1731. DOI: 10.1016/j.biomaterials.2012.11.011.10.1016/j.biomaterials.2012.11.01123201249Open DOISearch in Google Scholar

14. Wang, Z., Li, X., Song, Y., Li, L., Shi, W. & Ma, H. (2015). An upconversion luminescence nanoprobe for the ultrasensitive detection of hyaluronidase. Anal. Chem. 87 (11), 5816-5823. DOI: 10.1021/acs.analchem.5b01131.10.1021/acs.analchem.5b0113125947627Open DOISearch in Google Scholar

15. Liu, Z., He, T. & Xue, Q. (2016). S ynthesis and up-conversion emission of β-Ca2SiO4 :( Er3+, Yb3+). Mater. Manuf. Process. 31(2), 194-197. DOI: 10.1080/10426914.2015.1048366.10.1080/10426914.2015.1048366Open DOISearch in Google Scholar

16. Surabi, M.A., Chandradass, J. & Park, S. (2015). ZnO--based thin fi lm transistor fabricated using radio frequency magnetron sputtering at low temperature. Mater. Ma nuf. Process. 30, 175-178. DOI: 10.1080/10426914.2014.892973.10.1080/10426914.2014.892973Open DOISearch in Google Scholar

17. Jang, Y.R., Yoo, K.H., Ahn, J.S., Kim, C. & Park, S.M. (2011). 1.54μm emission mechanism of Er-doped zinc oxide thin fi lms. Appl. Surf. Sci. 257(7), 2822-2824. DOI: 10. 1016/j. apsusc.2010.10.069.10.1016/j.apsusc.2010.10.069Open DOISearch in Google Scholar

18. Vijayalakshmi, U., Chellappa, M., Anjaneyulu, U., Manivasagam, G. & Sethu, S. (2016). Infl uence of coating parameter and sintering atmosphere on the corrosion resistance behavior of electrophoretically deposited composite coatings. Mater. Manuf. Process. 31, 95-106. DOI: 10.1080/10426914.2015.1070424.10.1080/10426914.2015.1070424Open DOISearch in Google Scholar

19. Chawalit, B., Sanpet, N., Sutthipoj, S., Pipat, R.,Supab, C. & Duangmanee, W. (2015). Effect of gallium interlayer in ZnO and Al-doped ZnO thin fi lms. Integr. Ferroelectr. 165, 121-130. DOI: 10.1080/10584587.2015.1063914.10.1080/10584587.2015.1063914Open DOISearch in Google Scholar

20. Ng, Z., Chan, K., Low, C., Kamaruddin, S.A. & Sahdan, M.Z. (2015). Al and Ga doped ZnO fi lms prepared by a sol--gel spin coating technique. Ceram. Int. 41, S254-S258. DOI: 10.1016/j.ceramint.2015.03.183.10.1016/j.ceramint.2015.03.183Open DOISearch in Google Scholar

21. Hao, S., Sun, L., Chen, G., Qiu, H., Xu, C., Soitah, T.N., Sun, Y. & Yang, C. (2012). Synthesis of monoclinic Na3ScF6:1mol% Er3+/2mol% Yb3+ microcrystals by a facile hydrothermal approach. J. Alloys Compd. 522, 74-77. DOI: 10.1016/j.jallcom.2012.01.080.10.1016/j.jallcom.2012.01.080Open DOISearch in Google Scholar

22. Meng, X., Liu, C., Wu, F. & Li, J. (2011). Strong up-conversion emissions in ZnO:Er3+, ZnO:Er3+-Yb3+ nanoparticles and their surface modifi ed counterparts. J. Colloid Interface Sci. 358(2), 334-337. DOI: 10.1016/j.jcis.2011.03.036.10.1016/j.jcis.2011.03.03621481887Open DOISearch in Google Scholar

23. Tamrakar, R.K., Bisen, D.P., Upadhyay, K. & Sahu, I.P. (2015). Comparative study and role of Er3+ and Yb3+ concentrations on upconversion process of Gd2O3:Er3+ Yb3+ phosphors prepared by solid-state reaction and combustion method. J. Phys. Chem. C 119(36), 21072-21086. DOI: 10.1021/10.1021/acs.jpcc.5b06443Search in Google Scholar

acs.jpcc.5b06443.Search in Google Scholar

24. Chen, G.X ., Ding, C.J., Wu, E., Wu, B.T., Chen, P., Ci, X.T., Liu, Y., Qiu, J.R., Zeng, H.P. (2015). Tip-enhanced upconversion luminescence in Yb3+-Er3+ codoped NaYF4 nanocrystals. J. Phys. Chem. C 119(39), 22604-22610. DOI: 10.1021/acs.jpcc.5b04387.10.1021/acs.jpcc.5b04387Open DOISearch in Google Scholar

25. Lu, D., Cho, S.K., Ahn, S., Brun, L., Summers, C.J., Park, W. (2014). Plasmon e nhancement chanism for the upconversion processes in NaYF4:Yb3+, Er3+ nanoparticles: axwellversus förster. ACS Nano 8(8), 7780-7792. DOI: 10.1021/nn5011254.10.1021/nn501125425003209Search in Google Scholar

26. Bai, Y., Wang, Y., Yang, K., Zhang, X., Song, Y., & Wang, C.H. (2008). Enhanced upconverted photoluminescence in Er3+, and Yb3+, codoped ZnO nanocrystals with and without li+, ions. Optics Communications, 281(21), 5448-5452. DOI: 10.1016/j.optcom.2008.07.041.10.1016/j.optcom.2008.07.041Open DOISearch in Google Scholar

27. Li, D., Dong, B., Bai, X., Wang, Y. & Song, H. (2010). Infl uence of the TGA modifi cation on upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+ nanoparticles. J. Phys. Chem. C 114(18), 8219-8226. DOI: 10.1021/jp100893k.10.1021/jp100893kOpen DOISearch in Google Scholar

28. Gilliland , G.D., Powell, R.C. & Esterowitz, L. (1988). Spectral and up-conversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+. Physical Review B.DOI: 10.1103/PhysRevB.38.9958.10.1103/PhysRevB.38.99589945823Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering