Cite

1. Drużyński, S., Mazurek, K. & Białowicz, K. (2014). The use of ion exchange in the recovery of vanadium from the mass of a spent catalyst used in the oxidation of SO2 to SO3. Pol. J. Chem. Technol. 16(2), 69-73. DOI: 10.2478/pjct-2014-0032.10.2478/pjct-2014-0032Open DOISearch in Google Scholar

2. Mazurek, K. (2014). Removal of vanadium, potassium and iron from spent vanadium catalyst by leaching with citric acid at atmospheric pressure. Pol. J. Chem. Technol. 16(1), 59-62.DOI: 10.2478/pjct-2014-0010.10.2478/pjct-2014-0010Open DOISearch in Google Scholar

3. Mazurek, K. (2012). Extraction of vanadium and potassium compounds from the spent vanadium catalyst from the metallurgical plant. Pol. J. Chem. Technol. 14(2), 49-53. DOI: 10.2478/v10026-012-0070-9.10.2478/v10026-012-0070-9Open DOISearch in Google Scholar

4. Khorfan, S., Wahoud, A. & Reda Y. (2001). Recovery of vanadium pentaoxide from spent catalyst used in the manufacture of sulphuric acid. Periodica Polythechnica Ser. Chem.Eng. 45(2), 131-137.Search in Google Scholar

5. Mohanty, J., Rath, P.C., Bhattacharya, I.N. & Paramguru, R.K. (2011). The recovery of vanadium from spent catalyst: a case study. Mineral Processing and Extractive Metallurgy 120, 56-60. DOI: 10.1179/037195510X12772935654909.10.1179/037195510X12772935654909Open DOISearch in Google Scholar

6. Magnani, J.L., Kachan, G.C. & Ferreira, N.L. (2000). Vanadium recovery by leaching in spent catalyst for sulfuric acid production. Rev. Ciencia Technol. 8, 85-90.Search in Google Scholar

7. Lozano, L.J. & Juan, D. (2001). Leaching of vanadium from spent sulphuric acid catalysts. Miner. Eng. 5, 543-546.DOI: 10.1016/S0892-6875(01)00042-5.10.1016/S0892-6875(01)00042-5Open DOISearch in Google Scholar

8. Brouwer, P. (2006). Theory of XRF. Almelo, Netherlands: Panalytical.Search in Google Scholar

9. Grobela, M. & Grzesiak, P. (2007). The infl uence of iron compounds in the sulfuric acid catalyst on the SO2 oxidation process. Pol. J. Chem. Technol. 1(9), 2-6. DOI: 10.2478/v10026-007-0002-2.10.2478/v10026-007-0002-2Open DOISearch in Google Scholar

10. Grzesiak, P., Grobela, M. & Motała, M. (2007). The infl uence of the catalyst worktime on SO2 emission quantity from the sulfuric acid system and the catalyst waste material. Pol. J. Chem. Technol. 3(9), 134-137. DOI: 10.2478/v10026-007-0073-0. 1_3_2018 (612) Mazurek10.2478/v10026-007-0073-0Search in Google Scholar

11. Ksibi, M., Elaloui, E., Houas, A. & Moussa, N. Diagnosis of deactivation sources for vanadium catalyst used in SO2 oxidation reaction and optimization of vanadium extraction from deactivated catalysts. Appl. Surf. Sci. 220, 105-112. DOI: 10.1016/S0169-4332(03)00748-7.10.1016/S0169-4332(03)00748-7Open DOISearch in Google Scholar

12. Mazurek, K. & Grzesiak, P. (2017) Separation of vanadium ions from the post - leaching solution of spent vanadium catalyst. Przem. Chem. 6 (96), 1390-1393. DOI: 10.15199/62.2017.6.36.10.15199/62.2017.6.36Search in Google Scholar

13. Zeng, L. & Cheng, C.Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part I: metallurgical processes. Hydrometallurgy 98, 1-9. DOI: 10.1016/j.hydromet.2009.03.010.10.1016/j.hydromet.2009.03.010Open DOISearch in Google Scholar

14. Zeng, L. & Cheng, C.Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part II: separation and purifi cation. Hydrometallurgy 98, 10-20. DOI:10.1016/j.hydromet.2009.03.012.10.1016/j.hydromet.2009.03.012Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering