Open Access

Thermal stability for the effective use of commercial catalase


Cite

1. Eren, H.A., Anis, P. & Davulcu, A. (2009). Enzymatic Onebath Desizing-Bleaching - Dyeing Process for Cotton Fabrics. Text. Res. J. 79, 1091-1098. DOI: 10.1177/0040517508099388.10.1177/0040517508099388Search in Google Scholar

2. Nielsen, P.H., Kuilderd, H., Zhou W. & Lu, X. (2009). Enzyme biotechnology for sustainable textiles. In Blackburn, R.S. (Eds), Sustainable textiles. Life cycle and environmental impact. (pp.113-138). Woodhead Publishing in Textiles No.98 http:// www.novozymes.com/en/sustainability/Published-LCAstudies/Documents/Enzyme%20biotechnology%20for%20sustainable%20textiles.pdf10.1533/9781845696948.1.113Search in Google Scholar

3. Costa, S.A., Tzanov, T., Carneiro, A.F., Gűbitz, G.M. & Cavaco-Paula, A. (2002). Recycling of textile bleaching effl uents for dyeing using immobilized catalase. Biotechnol. Lett. 24(3), 173-176. DOI: 10.1023/A:1014136703369.10.1023/A:1014136703369Search in Google Scholar

4. Tarhan, L. (1995). Use of immobilized catalase to remove H2O2 used in the sterilization of milk. Proc. Biochem. 30(7), 623-628. DOI: 10.1016/0032-9592(94)00066-2.10.1016/0032-9592(94)00066-2Search in Google Scholar

5. Akertek, E. & Tarhan, L. (1995). Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl. Biochem. Biotechnol. 50(3), 291-303. DOI: 10.1007/BF02788099.10.1007/BF02788099Search in Google Scholar

6. Fernández-Lafuente, R., Rodriguez, V. & Guisán, J.M. (1998). The coimmobilization of d-amino acid oxidase and catalase enables the quantitative transformation of d-amino acids (d-phenylalanine) into α-keto acids (phenylpyruvic acid). Enz. Microb. Technol. 23(1-2), 28-33. DOI: 10.1016/S0141-0229(98)00028-3.10.1016/S0141-0229(98)00028-3Search in Google Scholar

7. Sumner, J.B. & Dounce, A.I. (1937). Crystalline catalase. J. Biol. Chem. 121, 417-427. http://www.jbc.org/content/121/2/417.full.pdf+html10.1016/S0021-9258(18)74274-9Search in Google Scholar

8. Yoshimoto, M., Sakamoto, H., Yoshimoto, N., Kuboi, R. & Nakao, K. (2007). Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enz. Microb. Technol. 41, 849-858. DOI:10.1016/j. enzmictec.2007.07.008.Search in Google Scholar

9. Na, W., Wei, Q., Sun, H. & Nie, Z.R. (2013). Catalase immobilized on siliceous mesocellular foam with controlled window size. J. Porous Materials 20(1), 75-79. DOI: 10.1007/ s10934-012-9576-z.10.1007/s10934-012-9576-zSearch in Google Scholar

10. Doğaç, Y.İ. & Teke, M. (2013). Immobilization of bovine catalase onto magnetic nanoparticles. Prep. Biochem. Biotechnol. 43(8), 750-765. DOI: 10.1080/10826068.2013.773340.10.1080/10826068.2013.773340Search in Google Scholar

11. Switala, J. & Loewen, P.C. (2002). Diversity of properties among catalases. Arch. Biochem. Biophys. 401, 145-154. DOI: 10.1016/s0003-9861(02)00049-8.10.1016/S0003-9861(02)00049-8Search in Google Scholar

12. Kaasgaard, S. (2008). European Patent No. 1,718,724 B1. European Patent Office.Search in Google Scholar

13. Miłek. J. & Wójcik, M. (2011). Effect of temperature on the decomposition of hydrogen peroxide by catalase Terminox Ultra. Przem. Chem. 90(6), 1260-1263. http://sigma-not.pl/publikacja-60227-wplyw-temperatury-na-rozkladnadtlenku-wodoru-przez-katalaze-terminox-ultra-przemyslchemiczny-2011-6.html (abstract in Polish).Search in Google Scholar

14. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess Biosyst. Eng. 35(9), 1523-1530. DOI: 10.1007/s00449-012-0742-0.10.1007/s00449-012-0742-0Search in Google Scholar

15. Hakala, M., Rantamaki, S., Puputti, E.M., Tyystjarvi, T. & Tyystjarvi, E. (2006). Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J. Exp. Bot. 57(8), 1809-1816. DOI: 10.1093/jxb/erj189.10.1093/jxb/erj189Search in Google Scholar

16. Díaz, A., Muñoz-Clares, R.A., Rangel, P., Valdés, V.J. & Hansberg, W. (2005). Functional and structural analysis of catalase oxidized by singlet oxygen. Biochimie 87, 205-214. DOI: 10.1016/j.biochi.2004.10.014.10.1016/j.biochi.2004.10.014Search in Google Scholar

17. Cantemira, A.R., Raducana, A., Puiub, M. & Oancea, D. (2013). Kinetics of thermal inactivation of catalase in the presence of additives. Proc. Biochem. 48, 471-477. DOI: 10.1016/j. procbio.2013.02.013.Search in Google Scholar

18. Oancea, D., Stuparu, A., Nita, M., Puiu, M. & Raducan, A. (2008). Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method. Biophys. Chem. 138, 50-54. DOI: 10.1016/j.bpc.2008.09.003.10.1016/j.bpc.2008.09.003Search in Google Scholar

19. Jürgen-Lohmann, D.L. & Legge, R.L. (2006). Immobilization of bovine catalase in sol - gels. Enz. Microb. Technol. 39, 626-633. DOI: 10.1016/j.enzmictec.2005.11.015.10.1016/j.enzmictec.2005.11.015Search in Google Scholar

20. Brauner, N. & Shacham, M. (1997). Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants. Chem. Eng. Proc. 36(3), 243-249. DOI: 10.1016/ S0255-2701(96)04186-4.10.1016/S0255-2701(96)04186-4Search in Google Scholar

21. Rodionova, O.E. & Pomerantsev, A.L. (2005). Estimating the parameters of the Arrhenius equation. Kinet. Catal. 46(3), 305-308. DOI: 10.1007/s10975-005-0077-9.10.1007/s10975-005-0077-9Search in Google Scholar

22. Schwaab, M. & Pinto, J.C. (2007). Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chem. Eng. Sci. 62(11), 2750-2764. DOI: 10.1016/j.ces.2008.03.010.10.1016/j.ces.2008.03.010Search in Google Scholar

23. Sunberg, R. (1998). Statistical aspects on fitting the Arrhenius equation. Chemom. Intell. Lab. Sys. 41, 249-252. DOI: 10.1016/S0169-7439(98)00052-5.10.1016/S0169-7439(98)00052-5Search in Google Scholar

24. Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431-441. http://www.dista.unibo.it/~bittelli/materiale_lettura_fisica_terreno/marquardt_63.pdf10.1137/0111030Search in Google Scholar

25. Schleeger, M., Heberle, J. & Kakorin, S. (2012). Simplifying the analysis of enzyme kinetics of cytochrome c oxidase by the Lambert-W function. Open J. Biophysics 2, 117-129. DOI: 10.4236/ojbiphy.2012.24015.10.4236/ojbiphy.2012.24015Search in Google Scholar

26. Freitas, F.F., Marquez, L.D.S., Ribeiro, G.P., Brandão, G.C., Cardoso, V.L. & Ribeiro, E.J. (2012). Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Brazilian J. Chem. Eng. 29(01), 15-24. DOI: 10.1590/S0104-66322012000100002.10.1590/S0104-66322012000100002Search in Google Scholar

27. Sriyudthsak, K., Shiraishi, F. & Hirai, M.Y. (2013). Identification of a metabolic reaction network from time-series data of metabolite concentrations. PLOS ONE 8(1) e51212, 1-9. DOI: 10.1371/journal.pone.0051212.10.1371/journal.pone.0051212354237923326311Search in Google Scholar

28. Costa, S.A. & Reis, R.L. (2004). Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics. J. Mater. Sci.-Mater. Med. 15 (4), 335-342. DOI: 10.1023/B:JMSM.0000021098.75103.3a.10.1023/B:JMSM.0000021098.75103.3aSearch in Google Scholar

29. Gudelj, M., Fruhwirth, G.O., Paar, A., Lottspeich, F., Robra, K.H., Cavaco-Paulo, A. & Gübitz, G.M. (2001). A catalase- peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effl uents. Extremophiles 5, 423-429. DOI: 10.1007/s007920100218.10.1007/s00792010021811778844Search in Google Scholar

30. Lorentzen, M.S., Moe, E.H., Jouve, M. & Willassen, N.P. (2006). Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Prot. Mirab. Extrem. 10, 427-440. DOI: 10.1007/s00792-006-0518-z.10.1007/s00792-006-0518-z16609813Search in Google Scholar

31. Vasić-Rački, D., Findrik, Z. & Presečki, A.V. (2011). Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91(4), 845-856. DOI: 10.1007/s00253-011-3414-0.10.1007/s00253-011-3414-021691784Search in Google Scholar

32. Findrik, Z. & Vasić-Rački, D. (2008). Mathematical modelling of amino acid resolution catalyzed by L-amino acid oxidases from Crotalus adamanteus and Crotalus atrox. Proc. Biochem. 43(11), 1186-1194. DOI: 10.1016/j.procbio.2008.06.010.10.1016/j.procbio.2008.06.010Search in Google Scholar

33. Grubecki, I. (2011). The optimal temperature control for the reactions with parallel deactivation of enzyme encapsulated inside microorganism cells. Comput. Methods Sci. Technol. 17(1-2), 25-34. 34. https://www.man.poznan.pl/cmst/2011/17_1/CMST17_12_03_Grubecki.pdf10.12921/cmst.2011.17.01.25-34Search in Google Scholar

34. Grubecki, I. & Wójcik, M. (2006). Analysis of temperature policies for batch reactors with concentration independent catalyst deactivation. J. Chem. Eng. Jap. 39(10), 1065-1068. https://www.jstage.jst.go.jp/browse/jcej/39/10/_contents 10.1252/jcej.39.1065Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering