Cite

1. Zeng, X.Q., Latimer, M.L., Xiao, Z.L., Panuganti, S., Welp, U., Kwok, W.K. & Xu, T. (2011). Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes. Nano Lett. 11, 262–268. DOI: 10.1021/nl103682s.10.1021/nl103682s21114299Search in Google Scholar

2. Topil’nikov, V.I. & Sosna, M.K. (2012). Modeling paraffin hydrocarbon hydrocracking process. Chem. Technol. Fuels Oils 48(2), 135–142. DOI: 10.1007/s10553-012-0349-9.10.1007/s10553-012-0349-9Search in Google Scholar

3. Sheldon, R.A. & Bekkum, H. van (2007). Catalytic Hydrogenation and Dehydrogenation. In Fine Chemicals through Heterogeneous Catalysis. Wiley-VCH Verlag GmbH, Weinheim, Germany. DOI: 10.1002/9783527612963.ch08.10.1002/9783527612963.ch08Search in Google Scholar

4. Blaser, H.U. (2012). Industrial Asymmetric Hydrogenation. In M.L. Crawley and B.M. Trost (Eds.), Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective. John Wiley & Sons, Inc., Hoboken, NJ, USA. DOI: 10.1002/9781118309872.ch8.10.1002/9781118309872.ch8Search in Google Scholar

5. Kumar, A., Zhang, P., Vincent, A., McCormack, R., Kalyanaraman, R., Cho, H.J. & Seal, S. (2011). Hydrogen selective gas sensor in humid environment based on polymer coated nanostructured-doped tin oxide. Sens. Actuators B: Chem. 155, 884–892. DOI: 10.1016/j.snb.2011.01.065.10.1016/j.snb.2011.01.065Search in Google Scholar

6. Noh, J.-S., Lee, J.M. & Lee, W. (2011). Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors 11, 825851. DOI: 10.3390/s110100825.10.3390/s110100825327410922346605Search in Google Scholar

7. Joshi, R.K., Krishnan, S., Yoshimura, M. & Kumar, A. (2009). Pd Nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191–1196. DOI: 10.1007/s11671-009-9379-6.10.1007/s11671-009-9379-6289409720596429Search in Google Scholar

8. Yang, F., Kung, S.C., Cheng, M., Hemminger, J.C., Penner, R.M. (2010). Smaller is faster and more sensitive: The effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244. DOI: 10.1021/nn101475c.10.1021/nn101475c20707318Search in Google Scholar

9. Zilli, D., Bonelli, P.R. & Cukierman, A.L. (2011). Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films. Sens. Actuators B: Chem. 157, 169–176. DOI: 10.1016/j.snb.2011.03.045.10.1016/j.snb.2011.03.045Search in Google Scholar

10. Hübert, T., Boon-Brett, L., Black, G. & Banach, U. (2011). Hydrogen sensors – A review. Sens. Actuators B: Chem. 157, 329–352. DOI: 10.1016/j.snb.2011.04.070.10.1016/j.snb.2011.04.070Search in Google Scholar

11. Lee, E., Lee, J.M., Koo, J.H., Lee, W., Lee, T. (2010). Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas. Int. J. Hydrogen Energ. 35, 6984–6991. DOI: 10.1016/j. ijhydene.2010.04.051.Search in Google Scholar

12. Xu, T., Zach, M.P., Xiao, Z.L., Rosenmann, D., Welp, U., Kwok, W.K., Crabtree, G.W. (2005). Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films, Appl. Phys. Lett. 86, 203104. DOI: 10.1063/1.1929075.10.1063/1.1929075Search in Google Scholar

13. Yang, F., Taggart, D.K. & Penner, R.M. (2009). Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture. Nano Lett. 9, 2177–2182. DOI: 10.1021/nl9008474.10.1021/nl900847419391610Search in Google Scholar

14. Khanuja, M., Shrestha, S., Mehta, B.R., Kala, S. & Kruis, F.E. (2011). Magnitude and time response of electronic and topographical changes during hydrogen sensing in size selected palladium nanoparticles. J. Appl. Phys. 110, 014318. DOI: 10.1063/1.3603053.10.1063/1.3603053Search in Google Scholar

15. Lee, J., Noh, J.S., Lee, S.H., Song, B., Jung, H., Kim, W., Lee, W. (2012). Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrogen Energ. 37, 7934–7939. DOI: 10.1016/j.ijhydene.2012.01.067.10.1016/j.ijhydene.2012.01.067Search in Google Scholar

16. Czerwosz, E., Diduszko, R., Dłużewski, P., Kęczkowska, J., Kozłowski, M., Rymarczyk, J., Suchańska, M. (2008). Properties of Pd nanocrystals prepared by PVD method. Vacuum 82, 372–376. DOI: 10.1016/j.vacuum.2007.08.003.10.1016/j.vacuum.2007.08.003Search in Google Scholar

17. Kamińska, A., Krawczyk, S., Kozłowski, M., Czerwosz, E. & Sobczak, K. (2013). Kinetics of interaction of hydrogen with nanostructured C–Pd films for hydrogen sensing. Sensor Lett. 11, 500–504. DOI: 10.1166/sl.2013.2915.10.1166/sl.2013.2915Search in Google Scholar

18. Ibañez, F.J. & Zamborini, F.P. (2006). Ozone- and thermally activated films of palladium monolayer-protected clusters for chemiresistive hydrogen sensing. Langmuir 22, 9789–9796. DOI: 10.1021/la0617309.10.1021/la061730917073513Search in Google Scholar

19. Yang, F., Taggart, D.K. & Penner, R.M. (2010). Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas. Small 6(13), 1422–1429. DOI: 10.1002/smll.201000145.10.1002/smll.20100014520564483Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering