Open Access

Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water


Cite

1. Tankiewicz, M., Fenik, J. & Biziuk, M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples ends in. Anal. Chem. 29, 1050-1063. DOI: 10.1016/j.trac.2010.05.008.10.1016/j.trac.2010.05.008Search in Google Scholar

2. Sosnowska, K., Styszko-Grochowiak, K. & Gołas, J. (2009). Emerging contaminants in aquatic environment-sources, risk and analytical problems Anal. 4, 44-48.Search in Google Scholar

3. McKinlay, R., Plant, J.A., Bell, J.N.B. & Voulvoulis, N. (2008). Endocrine disrupting pesticides: Implications for risk assessment Environ. Inter., 34, 2, 168-183. DOI: 10.1016/j. envint.2007.07.013.Search in Google Scholar

4. Lasram, M.M., Annabi, A.B., El-Elj, N., Selmi, S., Kamoun, A., El-Fazaa, S. & Gharbi, N. (2009). Metabolic disorders of acute exposure to malathion in adult wistar rats. J. Hazard. Mat. 163, 1052-1055. DOI:10.1016/j.jhazmat.2008.07.059.10.1016/j.jhazmat.2008.07.05918814961Search in Google Scholar

5. Derbalah, A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1), 308-327.Search in Google Scholar

6. Shawaqfeh, A.T. & Al Momani, F.A. (2010). Photocatalytic treatment of water soluble pesticide by advanced oxidation technologies using UV light and solar energy. Solar Energy, 84, 1157-1165.10.1016/j.solener.2010.03.020Search in Google Scholar

7. Francisca, M.C., Vilar, V.J.P., Ferreira, Ana, F.C.C., Felipe, D.R.A. & Márcia, D., Sousa, M.A., Goncalves, C., Boaventura Rui, A.R. & Alpendurada, M.F. (2012). Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale Chem. Eng. J. 209, 429-441. DOI: 0.1016/j.cej.2012.08.009.Search in Google Scholar

8. Derbalah, A.S., Nakatani, N. & Sakugawa, H. (2004). Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere, 57, 635-644. DOI: 10.1016/j.Search in Google Scholar

9. Lines, M.G. (2008). Nanomaterials for practical functional uses. J. Alloys Compd, 449, 242-245. DOI: 10.1016/j.Search in Google Scholar

10. Mamalis, A.G. (2007). Recent advances in nanotechnology. J. Mat. Process. Technol. 181, 52-58.10.1016/j.jmatprotec.2006.03.052Search in Google Scholar

11. Miyazaki, K. & Islam, N. (2007). Nanotechnology systems of innovation - an analysis of industry and academia research activities. Technovation, 27, 661-675. DOI: 10.1016/j. technovation.2007.05.009.Search in Google Scholar

12. Cuenya, B.R. (2010). Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 518, 3127-3150. DOI: 10.1016/j.tsf.2010.01.018.10.1016/j.tsf.2010.01.018Search in Google Scholar

13. Theng, B.K.G. & Yuan, G. (2008). Nanopaticles in the soil environment. Elements 4, 395-399.10.2113/gselements.4.6.395Search in Google Scholar

14. Feng, J., Hu, X. & Yue, P.L. (2004 a). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 38, 269-275.10.1021/es034515c14740746Search in Google Scholar

15. Feng, J., Hu, X. & Yue, P.L. (2004 b). Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38, 5773-5778.10.1021/es049811j15575299Search in Google Scholar

16. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 a). Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J. Catal. 251, 239-243. DOI: 10.1016/j.jcat.2007.07.006.10.1016/j.jcat.2007.07.006Search in Google Scholar

17. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 b). Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8, 2037-2042. DOI: 10.1016/j. catcom.2007.03.030.Search in Google Scholar

18. Zelmanov, G., Semiat, R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Wat. Res. 42, 492-498. DOI: 10.1016/j.watres.2007.07.045.10.1016/j.watres.2007.07.04517714754Search in Google Scholar

19. Nurmi, J., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L. & Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticle: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221-1230. DOI: 10.1021/es049190u.10.1021/es049190uSearch in Google Scholar

20. Megharaj, M., , Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspectiveReview Environ. Inter. 37, 1362-1375.Search in Google Scholar

21. Vidali, M. (2001). Bioremediation. An overview. PureAppl. Chem. 73 (7): 1163-1172 . DOI: 10.1351/pac200173071163.10.1351/pac200173071163Search in Google Scholar

22. Kralj, M.B., Franko, M. & Trebse, P. (2007). Photodegradation of organophosphorus insecticides-Investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal spectrometric bioassay. Chemosphere 67, 99-107. DOI: 10.1016/j.chemosphere.2006.09.039.10.1016/j.chemosphere.2006.09.039Search in Google Scholar

23. Simonian, A.L., Efremenko, E.N. & Wild, J.R. (2001). Discriminative detection of neurotoxins in multi-component samples. Anal. Chim. Acta 444, 179-186.10.1016/S0003-2670(01)01099-6Search in Google Scholar

24. Abdel-Halim, K.Y., Salama, A.K., El-Khateeb, E.N. & Bakry, N.M. (2006). Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: Implications for monitoring and biomarker responses. Chemosphere 63, 1491-1498. DOI: 10.1016/j.chemosphere.2005.09.019.10.1016/j.chemosphere.2005.09.019Search in Google Scholar

25. Abdel-Megeed, A. (2004). Psychrophilic degradation oflong chain alkanes, Unpublished doctoral dissertation, Technical University Hamburg-Harburg, Germany. pp. 158.Search in Google Scholar

26. Derbalah, A.S., Massoud, A.H. & Belal, E.B. (2008). Biodegrability of famoxadone by various microbial isolates in aquatic system. Land Contamination & Reclama. 16 (1), 13-23. DOI: 10.2462/09670513.876.10.2462/09670513.876Search in Google Scholar

27. Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid calorimetric determination of acetyl cholinesterase activity. Biochem. Pharmacol. 7, 88-95.10.1016/0006-2952(61)90145-9Search in Google Scholar

28. Bancroft, J.D. & Stevens, A. (1996). Theory and Practiceof Histological Techniques. (4th ed.). Churchill Livingstone. Edinburg, London, Melbourne and New York.Search in Google Scholar

29. Abd-Allah, S.W. & Hesham, M.G. (2003). Monitoring of pesticide residues in different sources of drinking water in some rural areas. Alex. J. Agric. Res. 48 (3), 187-199.Search in Google Scholar

30. Ashry, M.A., Bayoumi, O.C., El-Fakharany, I.I., Derbalah, A.S. & Ismail, A.A. (2006). Monitoring and removal of pesticides residues in drinking water collected from Kafr El-Sheikh governorate, Egypt. J. Agric. Res. Tanta Univ. 32 (3), 691-704.Search in Google Scholar

31.Aizawa, M.Y.T., Matumoto, N. & Ouna, F. (1994). Degradation of Pesticides by Chlorination During Water Purification. Groundwater Contamination, Environmental Restoration, and Diffuse Source Pollution. Water Sci. Tech. 30, 119-128.10.2166/wst.1994.0323Search in Google Scholar

32. Aslan, S. (2005). Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system Process. Biochem. 40, 417-424. DOI: 10.1016/j. procbio.2004.01.030.Search in Google Scholar

33. Ayranci, E. & Hoda, N. (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere. 60, 1600-1607. DOI: 10.1016/j.chemosphere.2005.02.040 .10.1016/j.chemosphere.2005.02.04016083766Search in Google Scholar

34. Matilainen, A., Vepsäläinen, M. & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment. A Rev. Advances in Colloid and Interface Sci. 159,189-197. DOI: org/10.1016/j.cis.2010.06.007.10.1016/j.cis.2010.06.00720633865Search in Google Scholar

35. Sarkar, B.N., Venkateswralu, R., Nageswara, B., Hattacharjeec, C. & Kalea, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination 212, 129-140. DOI: 10.1016/j.desal.2006.09.021.10.1016/j.desal.2006.09.021Search in Google Scholar

36. He, F., Zhao, D., Liu, J. & Roberts, C.B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indian Engineer. Chem. Res. 46, 29-34. DOI: 10.1021/ie0610896.10.1021/ie0610896Search in Google Scholar

37. He, F. & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39,3314-3320. DOI:10.1021/es048743y.10.1021/es048743y15926584Search in Google Scholar

38. Hayashi, H., Nakajima, Y. & Ohta, K. (2007). Novel degradation method of organic compounds in human surroundings using iron oxide. Rep. Technol. Res. Institute Osaka Pref. 21, 79-83. DOI: 10.1016/j.chemosphere.2010.11.052.10.1016/j.chemosphere.2010.11.05221146853Search in Google Scholar

39. Takuya, M., Tokumura, M., Sekine, M. & Kawase, Y. (2011). Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82, 1422-1430. DOI: 10.1016/j.chemosphere.2010.11.052.10.1016/j.chemosphere.2010.11.052Search in Google Scholar

40. Noorjahan, M., Kumari, V.D., Subrahmanyam, M. & Panda, L. (2005). Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl. Catal., B 57, 291-298.10.1016/j.apcatb.2004.11.006Search in Google Scholar

41. Pare, B.P., Singh, S. & Jonnalagadda, B. (2008). Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 4, 830-835.Search in Google Scholar

42. Kwan, W.P. & Voelker, B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral- catalyzed Fenton-like systems. Environ. Sci. Technol. 37, 1150-1158. DOI: 10.1021/es020874g.10.1021/es020874g12680668Search in Google Scholar

43. Wang, H., Xie, C., Zhang, W., Cai, Z., Cai, S., Yang, Z. & Gui, Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mat. 141, 645-652.10.1016/j.jhazmat.2006.07.02116930825Search in Google Scholar

44. Garrido-Ramírez, E.G., Theng, B.K.G. & Mora M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review Applied Clay Science 47, 182-192. DOI: 10.1016/j.clay.2009.11.044.10.1016/j.clay.2009.11.044Search in Google Scholar

45. Higa, T. (1995). What is EM Technology. College of Agriculture, University of Ryukyus, Okinawa, Japan.Search in Google Scholar

46. EM Technology. (1998). Effective Microorganisms for a Sustainable Agriculture and Environment. From Link http://emtech.org/prod01.htmm.Search in Google Scholar

47. EM Trading (2000). Effective Microorganisms (EM) from Sustainable Community Development. From EM Technology Product Link http://www.emtrading.com.html.Search in Google Scholar

48. Diver, S. (2001). Nature Farming and Effective Microorganisms’, Rhizosphere II: Publications. from Steve Diver Link http://ncatark.uark.edu/~steved/Nature-Farm-EM.html.Search in Google Scholar

49. Mulbry, W. & Karns, J. (1989). Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55, 289-293.10.1128/aem.55.2.289-293.19891841032541658Search in Google Scholar

50. Borm, P.J., David Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D. & Oberdorster, E. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle & Fibre Toxicol. 3, 1-35. DOI: 0.1186/1743-8977-3-11.10.1186/1743-8977-3-11158424816907977Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering