Open Access

Factors Affecting the Performance of Double Chamber Microbial Fuel Cell for Simultaneous Wastewater Treatment and Power Generation


Cite

1. Roy, R., Fakhruddin, A.N.M., Khatun, R., Islam, M.S., Ahsan, M.A., Neger, A.J.M.T. (2010). Characterization of Textile Industrial Effluents and its Effects on Aquatic Macrophytes and Algae. Bangladesh J. Sci. Ind. Res. 45 (1), 79-84. DOI: 10.3329/bjsir.v45i1.5187.10.3329/bjsir.v45i1.5187Search in Google Scholar

2. Alaton, I.A., Balcioglu, I.A. & Bahnemann, D.W. (2002). Advanced oxidation of a reactive dye bath effluent: Comparison of O3, H2O2/UVC and TiO2/UVA processes. Water Res. 36, 1143-1154. DOI: 10.1016/S0043-1354(01)00335-9.10.1016/S0043-1354(01)00335-9Search in Google Scholar

3. Sarasa, J., Roche, M.P., Ormad, M.P., Gimeno, E., Puig, A. & L. Ovelleiro, J. (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res. 32, 2721-2727. DOI: 10.1016/S0043-1354(98)00030-X.10.1016/S0043-1354(98)00030-XSearch in Google Scholar

4. Vandevivere, P.C., Bianchi, R. & Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol.72, 289-302. DOI: 10.1002/(SICI)1097-4660(199808)72: 4< 289::AID-JCTB905>3.0.CO;2-#.Search in Google Scholar

5. DosSantos, A.B., Cervantes, F.J. & Van-Lier, J.B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioressour. Technol . 98, 2369-2385. DOI: 10.1016/j.biortech.2006. 11. 013.Search in Google Scholar

6. Logan, B.E. & Regan, J.M. (2006). Microbial fuel cells: Challenges and applications. Environ. Sci. Technol. 41, 5172- -5180. DOI: 10.1021/es0627592.10.1021/es0627592Search in Google Scholar

7. Park, D.H. & Zeikus, G. (2003). Improved fuel cell and electrode designs for the producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348-355. DOI: 10.1002/bit.10501.10.1002/bit.1050112474258Search in Google Scholar

8. Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M. & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70 (5373-5382). DOI: 10.1128/AEM.70.9.5373-5382.2004.10.1128/AEM.70.9.5373-5382.200452091415345423Search in Google Scholar

9. Mohan, S.V., Saravanan, R., Veer, S.R., Mohanakrishna, G. & Sarma, P.N. (2006). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresour. Technol. 99 (3), 596-600. DOI: 10.1016/j.biortech.2006.12.026.10.1016/j.biortech.2006.12.02617321135Search in Google Scholar

10. Pant, D., Bogaert, G.V., Diels, L. & Vanbroekhoven, K. (2010). A review for the substrate used in microbial fuel cell (MFCs) for sustainable energy production. Bioresour. Technol. 101 (6), 1533-1543. DOI: 10.1016/j.biortech.2009.10.017.10.1016/j.biortech.2009.10.01719892549Search in Google Scholar

11. Sun, J., Hu, Y.Y., Bi, Z. & Cao, Y. (2009). Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode singlechamber microbial fuel cell. Bioresour. Technol. 100, 3185-3192. DOI: 10.1016/j. biortech.2009.02.002.Search in Google Scholar

12. Ieropoulos, I.A., Greenman, J., Melhuish, C. & Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzyme Microb. Tech. 37, 238-245. DOI: 10.1016/j.enzmictec.2005.03.006.10.1016/j.enzmictec.2005.03.006Search in Google Scholar

13. APHA, (1998). Standard methods for the examination of water and wastewater (20th ed). Washington DC, USA: American Public Health Association.Search in Google Scholar

14. Bennetto, (1990). Electricity generation by microorganisms.Search in Google Scholar

Biotechnology Education. 1 (4), 163-168.Search in Google Scholar

15. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. & Rabaey, K. (2006). Microbial fuel cells: Methodology and Technology. Environ. Sci. Technol. 40, 5181-5192. DOI: 10.1021/es0605016.10.1021/es060501616999087Search in Google Scholar

16. Ren, Z.Y., Ward, T.E. & Regan, J.M. (2007). Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci Technol. 41 (13), 4781-4786. DOI: 10.1021/es070577h.10.1021/es070577hSearch in Google Scholar

17. Hideki, S., Takaaki, N., Tokita, Y., Hatazawa, T., Tokuji, I., Tsujimura, S. & Kano, K. (2009). A high-power glucose/ oxygen biofuel cell operating under quiescent conditions. EnergyEnviron. Sci. 2, 133-138. DOI: 10.1039/B809841G.10.1039/B809841GSearch in Google Scholar

18. Zhao, F., Hamisch, F., Schroder, U., Scholz, F., Bogdanoff, P. & Hermann, I. (2005). Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7, 1405-1410. DOI: 10.1016/j.elecom.2005.09.032.10.1016/j.elecom.2005.09.032Search in Google Scholar

19. Li, Z.J., Zhang, X.W., Zeng, Y.X. & Lei, L.C. (2009). Electricity Production by an overflow-type wetted wall microbial fuel cell. Bioresour. Technol.100, 2551-2555. DOI: 10.1016/j. biortech.2008.12.018.Search in Google Scholar

20. You, S., Zhao, Q., Zhang, J., Jiang, J. & Zhao, S. (2006). A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sour. 162, 1409-1415. DOI: 10.1016/j. jpowsour.2006.07.063.Search in Google Scholar

21. Pandey, A., Singh, P. & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegrad. 59, 73-84. DOI: 10.1016/j.ibiod.2006.08.006.10.1016/j.ibiod.2006.08.006Search in Google Scholar

22. Sani, R.K. & Banerjee, U.C. (1999). Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb. Technol. 24, 433-437. DOI: 10.1016/S0141-0229(98)00159-8.10.1016/S0141-0229(98)00159-8Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering