Open Access

Alzheimer’s disease beyond the amyloid accumulation


Cite

World Health Organization. Risk reduction of cognitive decline and dementia: WHO guidelines. In Geneva; 2019. Search in Google Scholar

Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 2018;17(3):241-50. Search in Google Scholar

Tom SE, Hubbard RA, Crane PK, Haneuse SJ, Bowen J, McCormick WC, et al. Characterization of dementia and Alzheimer’s disease in an elderly population: updated incidence and life expectancy with and without dementia. Am J Public Health. 2015;105(2):408-13. Search in Google Scholar

Cummings JL, morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. alzheimers Res Ther. 2014;6(4):37. Search in Google Scholar

Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-5. Search in Google Scholar

Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology. 2008;71(24):1986–92. Search in Google Scholar

Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing Synaptic Density in Alzheimer Disease with Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging. JAMA Neurol. 2018;75(10):1215-24. Search in Google Scholar

McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler Jr DJ, Holland D, et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology. 2009;73(6):457-65. Search in Google Scholar

Sheppard O, Coleman M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. Alzheimer’s Disease: Drug Discovery. Brisbane: Exon Publications; 2020. p. 1-22. Search in Google Scholar

Rosenberg RN, Lambracht-Washington D, Yu G, Xia W. Genomics of Alzheimer’s disease: a review JAMA Neurol. 2016;73(7):867-74. Search in Google Scholar

Thal DR, Walter J, Saido TC, Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. acta Neuropathol. 2015;129(2):167-82. Search in Google Scholar

Perneczky R, Guo LH, Kagerbauer SM, Werle L, Kurz A, Martin J, et al. Soluble amyloid precursor protein β as blood-based biomarker of Alzheimer’s disease. transl Psychiatry. 2013;3(2):e227. Search in Google Scholar

Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. biol Psychiatry. 2015;77(1):43-51. Search in Google Scholar

Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer’s disease-linked presenilin I variants elevate aβ1- 42/1-40 ratio in vitro and in vivo. Neuron. 1996;17(5):1005-13. Search in Google Scholar

Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s Dement. 2016;12(6):733-48. Search in Google Scholar

Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipo-protein E receptors: normal biology and roles in Alzheimer disease Cold Spring Harb Perspect Med. 2012;2(3):a006312. Search in Google Scholar

Loy CT, Schofield PR, Turner AM, Kwok JBJ. Genetics of dementia. Lancet. 2014;383(9919):828–40. Search in Google Scholar

Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s Disease: Advances in Genetics, Pathophysiology, and Therapeutic Approaches. Lancet Neurol. 2021;20(1):68-80. Search in Google Scholar

Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. 2011;3(89):89ra57. Search in Google Scholar

Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G. Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease Ann Neurol. 2002;51(6):783-6. Search in Google Scholar

Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, et al. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9(1):3-4. Search in Google Scholar

Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. acta Neuropathol. 2013;126(3):329-52. Search in Google Scholar

Barão S, Moechars D, Lichtenthaler SF, De Strooper B. BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer’s Disease. trends Neurosci. 2016;39(3):158-69. Search in Google Scholar

Barao S, Zhou L, Adamczuk K, Vanhoutvin T, Leuven F, Demedts D, et al. BACE1 Levels Correlate with Phospho-Tau Levels in Human Cerebrospinal Fluid. Curr Alzheimer Res. 2013;10(7):671-8. Search in Google Scholar

Cadavid D, Mena H, Koeller K, Frommelt RA. Cerebral Beta Amyloid Angiopathy Is a Risk Factor for Cerebral Ischemic Infarction: A Case Control Study in Human Brain Biopsies. J Neuropathol Exp Neurol. 2000;59(9):768-73. Search in Google Scholar

Wegmann S, Biernat J, Mandelkow E. A current view on tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobiol. 2021;69:131-8. Search in Google Scholar

Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, et al. Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease. 2020 Cell. 183(6):1699-713. Search in Google Scholar

Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer’s Disease and Related Tauopathies. curr Alzheimer Res. 2010;7(8):656-64. Search in Google Scholar

Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112-9. Search in Google Scholar

Guillozet-Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI. pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. j Neurochem. 2006;97(4):1005-14. Search in Google Scholar

Dixit R, Ross JL, Goldman YE, Holzbaur ELF. Differential Regulation of Dynein and Kinesin Motor Proteins by Tau. Science. 2008;319(5866):1086–9. Search in Google Scholar

Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TLS, et al. Longitudinal change in CSF biomarkers in autosomal dominant Alzheimer’s disease. sci Transl Med. 2014;6(226):226ra30. Search in Google Scholar

Toledo JB, Xie SX, Trojanowski JQ, Shaw LM. longitudinal change in CSF tau and Aβ biomarkers for up to 48 months in ADNI. acta Neuropathol. 2013;126(5):659-70. Search in Google Scholar

Braak H, Braak E. Staging of alzheimer’s disease-related neurofibrillary changes. neurobiol Aging. 1995;16(3):271-8. Search in Google Scholar

Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci. 2018;19(10):610-21. Search in Google Scholar

Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks crossseed amyloid-β in Alzheimer’s disease. Nature. 2017;552(7685):355-61. Search in Google Scholar

Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S V, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. nature. 2019;575(7784):669. Search in Google Scholar

DiSabato DJ, Quan N, Godbout JP. neuroinflammation: the devil is in the details. j Neurochem. 2016;139(Suppl 2):136-53. Search in Google Scholar

Webers A, Heneka MT, Gleeson PA. the role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. immunol Cell Biol. 2020;98(1):28-41. Search in Google Scholar

Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. annu Rev Immunol. 2017;26(35):441-68. Search in Google Scholar

Sarlus H, Heneka MT. microglia in Alzheimer’s disease. j Clin Invest. 2017;127(9):3240. Search in Google Scholar

Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16(3):229-36. Search in Google Scholar

Stewart CR, Stuart LM, Wilkinson K, Van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11(2):155-61. Search in Google Scholar

Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397-411. Search in Google Scholar

Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 2013;18(4):519-32. Search in Google Scholar

El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med. 2003;197(12):1657–66. Search in Google Scholar

Heneka MT, Carson MJ, El Khoury JB, Landreth G, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. lancet Neurol. 2015;14(4):388-405. Search in Google Scholar

Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci. 2018;30(1):9-30. Search in Google Scholar

Vodovotz Y, Lucia MS, Flanders KC, Chesler L, Xie QW, Smith TW, et al. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med. 1996;184(4):1425-33. Search in Google Scholar

Dawson TM, Dawson VL. Nitric Oxide Signaling in Neurodegeneration and Cell Death. Adv Pharmacol. 2018;82:57-83. Search in Google Scholar

Jang JH, Surh YJ. Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase-NF-kappaB signaling pathway. Free Radic Biol Med. 2005;38(12):1604-13. Search in Google Scholar

Guan PP, Wang P. Integrated communications between cyclooxygenase-2 and Alzheimer’s disease. fASEB J. 2019;33(1):13-33. Search in Google Scholar

Koper OM, Kaminska J, Sawicki K, Kemona H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med. 2018;27(6):849-56. Search in Google Scholar

Wilkaniec A, Gassowska-Dobrowolska M, Strawski M, Adamczyk A, Czapski GA. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J Neuroinflammation. 2018;15(1):1. Search in Google Scholar

Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB. interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res. 2004;295(1):245-57. Search in Google Scholar

Gordon S. Alternative activation of macrophages Nat Rev Immunol. 2003;3(1):23-35. Search in Google Scholar

Colton CA: Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4(4):399-418. Search in Google Scholar

Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987-91. Search in Google Scholar

Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017;88(10):876-82. Search in Google Scholar

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-7. Search in Google Scholar

Lee M, Kang Y, Suk K, Schwab C, Yu S, McGeer PL. Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J Biol Chem. 2011;286(48):41230-45. Search in Google Scholar

Terwel D, Steffensen KR, Verghese PB, Kummer MP, Gustafsson JÅ, Holtzman DM, et al. Critical Role of Astroglial Apolipoprotein E and Liver X Receptor-α Expression for Microglial Aβ Phagocytosis. J Neurosci. 2011;31(19):7049-59. Search in Google Scholar

Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, Van Leuven F, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci. 2003;23(30):9796-804. Search in Google Scholar

Didonna A. tau at the interface between neurodegeneration and neuroinflammation. genes Immun. 2020;21(5):288-300. Search in Google Scholar

Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):1316-38. Search in Google Scholar

Hiltunen M, Khandelwal VKM, Yaluri N, Tiilikainen T, Tusa M, Koivisto H, et al. Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice. J Cell Mol Med. 2012;16(6):1206-22. Search in Google Scholar

Fan Z, Okello AA, Brooks DJ, Edison P. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease.Brain. 2015;138(Pt 12):3685-98. Search in Google Scholar

Pomytkin I, Costa-Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, et al. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther. 2018;24(9):763-74. Search in Google Scholar

Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63-80. Search in Google Scholar

Folch J, Ettcheto M, Busquets O, Sánchez-López E, Castro-Torres RD, Verdaguer E, et al. The Implication of the Brain Insulin Receptor in Late Onset Alzheimer’s Disease Dementia. Pharm 2018, Vol 11, Page 11. 2018;11(1):11. Search in Google Scholar

Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, et al. Altered Insulin Signaling in Alzheimer’s Disease Brain - Special Emphasis on PI3K-Akt Pathway. Front Neurosci. 2019;13:629. Search in Google Scholar

Querfurth H, Lee HK. mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. mol Neurodegener. 2021;16(1):44. Search in Google Scholar

Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE geno-type. Neurobiol Aging. 2006;27(3):451-8. Search in Google Scholar

Novak P, Maldonado DAP, Novak V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson’s disease and multiple system atrophy: a double-blind placebo-controlled pilot study. PLoS One. 2019;14(4):e0214364. Search in Google Scholar

Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J Alzheimers Dis. 2013;35(4):789-97. Search in Google Scholar

Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001;107(2):181-9. Search in Google Scholar

Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci. 2009;29(28):9078-89. Search in Google Scholar

Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev. 2013;12(1):289-309. Search in Google Scholar

Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, Villegas S. Mouse Models of Alzheimer’s Disease. j Alzheimer’s Dis. 2017;57(4):1171-83. Search in Google Scholar

Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-12. Search in Google Scholar

Knowles JK, Rajadas J, Nguyen TV V, Yang T, LeMieux MC, Vander Griend L, et al. The p75 neurotrophin receptor promotes amyloid-β(1-42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci. 2009;29(34):10627-37. Search in Google Scholar

sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ. beta-amyloid(1-42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008;28(15):3941-6. Search in Google Scholar

Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res. 1998;780(2):294-303. Search in Google Scholar

Wang LM, Wu Q, Kirk RA, Horn KP, Salem AHE, Hoffman JM, et al. Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain. Am J Nucl Med Mol Imaging. 2018;8(2):86. Search in Google Scholar

Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429-39. Search in Google Scholar

sheppard O, Coleman MP, Durrant CS. lipopolysaccha-ride-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. J Neuroinflammation. 2019;16(1):106. Search in Google Scholar

Bardou I, Kaercher RM, Brothers HM, Hopp SC, Royer S, Wenk GL. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol Aging. 2014;35(5):1065-73. Search in Google Scholar

Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S. Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol. 2000;402(1-2):77-85. Search in Google Scholar

sheng J, Bora S, Xu G, Borchelt D, Price D, Koliatsos V. Lipopolysaccharide-induced neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14(1):133-45. Search in Google Scholar

Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: a new model of diabetes mellitus. Science. 1976;193(4251):415-7. Search in Google Scholar

Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, et al. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse) Mol Neurobiol. 2013;47(2):711-25. Search in Google Scholar

Kraska A, Santin MD, Dorieux O, Joseph-Mathurin N, Bourrin E, Petit F, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One. 2012;7(9):e46196. Search in Google Scholar

Gáspár A, Hutka B, Ernyey AJ, Tajti BT, Varga BT, Zádori ZS, et al. Intracerebroventricularly Injected Streptozotocin Exerts Subtle effects on the Cognitive Performance of Long-Evans Rats. Front Pharmacol. 2021;12:662173. Search in Google Scholar

eISSN:
2537-5059
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy