Open Access

The influence of electron and gamma irradiation on the properties of starch:PVA films – the effect of irradiation dose


Cite

Voigt, H. -D., Gehring, M., Rom, C., Weiwad, D., Rapthel, I., Reichwald, K., & Kakuschke, R. (1995) Patent WO96/17888 (PCT/DE1995/001732). Biodegradable thermoplastic materials and packaging containers made from them (by GMBH, R.J. Reynolds Tobacco GMBH).VoigtH. -D.GehringM.RomC.WeiwadD.RapthelI.ReichwaldK.KakuschkeR.1995Patent WO96/17888 (PCT/DE1995/001732).Biodegradable thermoplastic materials and packaging containers made from them(by GMBH, R.J. Reynolds Tobacco GMBH).Search in Google Scholar

Jimenez, A., Fabra, M. J., Talens P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058–2076.JimenezA.FabraM. J.TalensP.ChiraltA.2012Edible and biodegradable starch films: A reviewFood Bioprocess Technol52058207610.1007/s11947-012-0835-4Search in Google Scholar

Ishigaki, T., Kawagoshi, Y., Ike, M., & Fujita, M. (1999). Biodegradation of a polyvinyl-alcohol-starch blend plastic film. World J. Micr. Biot., 15, 321–327.IshigakiT.KawagoshiY.IkeM.FujitaM.1999Biodegradation of a polyvinyl-alcohol-starch blend plastic filmWorld J. Micr. Biot1532132710.1023/A:1008919218289Search in Google Scholar

Tang, Sh., Peng, Z., Xiong, H., & Tang, H. (2008). Effect of SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym., 72, 521–526.TangSh.PengZ.XiongH.TangH.2008Effect of SiO2 on the performance of starch/polyvinyl alcohol blend filmsCarbohydr. Polym7252152610.1016/j.carbpol.2007.09.019Search in Google Scholar

Zhou, J., Ma, Y., Ren, L., Tong, Z., Liu, J., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632–638.ZhouJ.MaY.RenL.TongZ.LiuJ.XieL.2009Preparation and characterization of surface crosslinked TPS/PVA blend filmsCarbohydr. Polym7663263810.1016/j.carbpol.2008.11.028Search in Google Scholar

Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: A review. Mat. Sci. Eng. C, 29, 2370–2377.RahmatA. R.RahmanW. A.SinL. T.YussufA. A.2009Approaches to improve compatibility of starch filled polymer system: A reviewMat. Sci. Eng. C292370237710.1016/j.msec.2009.06.009Search in Google Scholar

Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1–16.TangX.AlaviS.2011Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradabilityCarbohydr. Polym8511610.1016/j.carbpol.2011.01.030Search in Google Scholar

Abramowska, A., Cieśla, K. A., Buczkowski, M. J., Nowicki, A., & Głuszewski, W. J. (2015). The influence of ionizing radiation on the properties of starch-PVA films. Nukleonika, 60(3), 669–677. DOI:10.1515/nuka-2015-0088.AbramowskaA.CieślaK. A.BuczkowskiM. J.NowickiA.GłuszewskiW. J.2015The influence of ionizing radiation on the properties of starch-PVA filmsNukleonika60366967710.1515/nuka-2015-0088Open DOISearch in Google Scholar

Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym., 109, 171–179.PriyaB.GuptaV. K.PathaniaD.SinghaA. S.2014Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibreCarbohydr. Polym10917117910.1016/j.carbpol.2014.03.04424815414Search in Google Scholar

Cieśla, K., Abramowska, A., Boguski, J., & Drewnik, J. (2017). The effect of PVA type and radiation treatment on the properties of starch-PVA films. Radiat. Phys. Chem., 141, 142–148. DOI:10.1016/jradphyschem.2017.06.015.CieślaK.AbramowskaA.BoguskiJ.DrewnikJ.2017The effect of PVA type and radiation treatment on the properties of starch-PVA filmsRadiat. Phys. Chem14114214810.1016/jradphyschem.2017.06.015Open DOISearch in Google Scholar

Cano, A. I., Cháfer, M., Chiralt, A., & Gonzalez-Martinez, Ch. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food. Eng., 167, 59–64.CanoA. I.CháferM.ChiraltA.Gonzalez-MartinezCh.2015Physical and microstructural properties of biodegradable films based on pea starch and PVAJ. Food. Eng167596410.1016/j.jfoodeng.2015.06.003Search in Google Scholar

Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr. Polym., 136, 441–448.AydinA. A.IlbergV.2016Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blendsCarbohydr. Polym13644144810.1016/j.carbpol.2015.08.093Search in Google Scholar

Mathew, Sh., Jayakumar, A., Kumar, V. P., Mathew, J., & Radhakrishnan, E. K. (2019). One-step synthesis of eco-friendly boiled rice starch blended polyvinyl-alcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int. J. Biol. Macromol., 139, 475–485.MathewSh.JayakumarA.KumarV. P.MathewJ.RadhakrishnanE. K.2019One-step synthesis of eco-friendly boiled rice starch blended polyvinyl-alcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purposeInt. J. Biol. Macromol13947548510.1016/j.ijbiomac.2019.07.187Search in Google Scholar

Tak, H. -Y., Yun, Y. -H., Lee, Ch. -M., & Yoon, S. -D. (2019). Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohydr. Polym., 208, 261–268.TakH. -Y.YunY. -H.LeeCh. -M.YoonS. -D.2019Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patchCarbohydr. Polym20826126810.1016/j.carbpol.2018.12.076Search in Google Scholar

Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend films. J. Polym. Environ., 19, 1013–1022.ParvinF.KhanM.SaadatA. H. M.KhanM. A. H.IslamJ. M. M.AhmedM.GafurM. A.2011Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend filmsJ. Polym. Environ191013102210.1007/s10924-011-0357-6Search in Google Scholar

Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763–771.SennaM. M.El-ShahatH. A.El NaggarA. W. M.2011Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materialsJ. Polym. Res1876377110.1007/s10965-010-9473-6Search in Google Scholar

Naznin, M., Abedin, M. -Z., Khan, M. -A., & Gafur, M. D. (2012). Influence of Acacia Catechu extracts and urea and gamma irradiation on the mechanical properties of starch/PVA-based material. International Scholarly Research Network (ISRN) Polymer Science, 2012, 348685(8p). DOI:10.5402/2012/348685.NazninM.AbedinM. -Z.KhanM. -A.GafurM. D.2012Influence of Acacia Catechu extracts and urea and gamma irradiation on the mechanical properties of starch/PVA-based materialInternational Scholarly Research Network (ISRN) Polymer Science2012348685(8p)10.5402/2012/348685Open DOISearch in Google Scholar

Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535–1541.Haji-SaeidM.SampaM. H. O.ChmielewskiA. G.2007Radiation treatment for sterilization of packaging materialsRadiat. Phys. Chem761535154110.1016/j.radphyschem.2007.02.068Search in Google Scholar

Silvestre, C., Pezzuto, M., Duraccio, D., Marra, A., & Cimmino, S. (2014). Exploiting nanotechnology and radiation technologies to develop new eco-sustainable nanomaterials for food packaging suitable for sterilization by irradiation. In Application processed nanomaterials in products from polymers for agricultural applications (pp. 99–104). Vienna: IAEA. (IAEA-TECDOC-1745).SilvestreC.PezzutoM.DuraccioD.MarraA.CimminoS.2014Exploiting nanotechnology and radiation technologies to develop new eco-sustainable nanomaterials for food packaging suitable for sterilization by irradiationInApplication processed nanomaterials in products from polymers for agricultural applications99104ViennaIAEA(IAEA-TECDOC-1745).Search in Google Scholar

Silvestre, C., Cimmino, S., Stoleru, E., & Vasile, C. (2017). Application of radiation technology to food packaging. In Y. Sun & A. G. Chmielewski (Eds.), Application of ionizing radiation in materials processing (pp. 461–484). Warsaw: Institute of Nuclear Chemistry and Technology.SilvestreC.CimminoS.StoleruE.VasileC.2017Application of radiation technology to food packagingInSunY.ChmielewskiA. G.(Eds.),Application of ionizing radiation in materials processing461484WarsawInstitute of Nuclear Chemistry and TechnologySearch in Google Scholar

Farkas, J. (1998). Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol., 44, 189–204.FarkasJ.1998Irradiation as a method for decontaminating food. A reviewInt. J. Food Microbiol4418920410.1016/S0168-1605(98)00132-9Search in Google Scholar

Giroux, M., & Lacroix, M. (1998). Nutritional adequacy of irradiated meat – a review. Food Res. Int., 31(4), 257–264.GirouxM.LacroixM.1998Nutritional adequacy of irradiated meat – a reviewFood Res. Int31425726410.1016/S0963-9969(98)00092-1Search in Google Scholar

Farkas, J. (2006). Irradiation for better foods. Trends Food Sci. Technol., 17, 148–152.FarkasJ.2006Irradiation for better foodsTrends Food Sci. Technol.1714815210.1016/j.tifs.2005.12.003Search in Google Scholar

World Health Organization. (1995). International Consutative Group on Food Irradiation. Review of data of high dose (10–70 kGy) irradiation of food: report of a consultation, Karlsruhe, 29 August – 2 September 1994. WHO. (WHO/FNU/FOS/95.10).World Health Organization1995International Consutative Group on Food Irradiation. Review of data of high dose (10–70 kGy) irradiation of food: report of a consultation, Karlsruhe, 29 August – 2 September 1994WHO. (WHO/FNU/FOS/95.10).Search in Google Scholar

Al-Kaisey, M. T., Alvan, A. -K. H., Mohammad, M. H., & Saeed, A. H. (2003). Effect of gamma irradiation on anti-nutritional factors in broad bean. Radiat. Phys. Chem., 67, 493–496.Al-KaiseyM. T.AlvanA. -K. H.MohammadM. H.SaeedA. H.2003Effect of gamma irradiation on anti-nutritional factors in broad beanRadiat. Phys. Chem6749349610.1016/S0969-806X(03)00091-4Search in Google Scholar

Kim, J. -H., Kim, D. -H., Ahn, H. -J., Park, H. -J., & Byun, M. W. (2005). Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control, 16, 43–49.KimJ. -H.KimD. -H.AhnH. -J.ParkH. -J.ByunM. W.2005Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiationFood Control16434910.1016/j.foodcont.2003.11.004Search in Google Scholar

Lee, J. -W., Kim, J. -H., Oh, S. -H., Byun, E. -H., Yook, H. -S., Kim, M. -R., Kim, K. -S., & Byun, M. -W. (2008) Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density. Radiat. Phys. Chem., 77, 352–365.LeeJ. -W.KimJ. -H.OhS. -H.ByunE. -H.YookH. -S.KimM. -R.KimK. -S.ByunM. -W.2008Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy densityRadiat. Phys. Chem7735236510.1016/j.radphyschem.2007.06.003Search in Google Scholar

Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modification of the functional properties of the edible films prepared using starch and starch-lipid system. Nukleonika, 55(2), 233–242.CieślaK. A.NowickiA.BuczkowskiM. J.2010Radiation modification of the functional properties of the edible films prepared using starch and starch-lipid systemNukleonika552233242Search in Google Scholar

Ibrahim, S. M. (2011). Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J. Appl. Polym. Sci., 119, 685–692.IbrahimS. M.2011Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clayJ. Appl. Polym. Sci11968569210.1002/app.32732Search in Google Scholar

Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modification of surface properties of thin polysaccharide films by low energy electron exposure. Carbohydr. Polym., 83, 608–615. DOI: 10.1016/j.carbpol.2010.08.029.RyzhkovaA.JarzakU.SchäfferA.BämerM.SwiderekP.2011Modification of surface properties of thin polysaccharide films by low energy electron exposureCarbohydr. Polym8360861510.1016/j.carbpol.2010.08.029Open DOISearch in Google Scholar

Stoica-Guzun, A., Stroescu, M., Jipa, I., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(vinylalcohol) and bacterial cellulose composites used as packaging. Radiat. Phys. Chem., 84, 200–204.Stoica-GuzunA.StroescuM.JipaI.DobreL.ZaharescuT.2013Effect of γ irradiation on poly(vinylalcohol) and bacterial cellulose composites used as packagingRadiat. Phys. Chem8420020410.1016/j.radphyschem.2012.06.017Search in Google Scholar

Wang, Sh. -M., Huang, Q. -Z., & Wang, Q. -Sh. (2005). Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydr. Res., 340(6) 1143–1147.WangSh. -M.HuangQ. -Z.WangQ. -Sh.2005Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxideCarbohydr. Res34061143114710.1016/j.carres.2005.02.009Search in Google Scholar

Głuszewski, W., Boruc, B., Kubera, H., & Abbasowa, D. (2015). The use of DRS and GC to studies the effects of ionizing radiation on paper artifacts. Nukleonika, 60(3), 665–668. DOI:10.1515/nuka-2015-0090.GłuszewskiW.BorucB.KuberaH.AbbasowaD.2015The use of DRS and GC to studies the effects of ionizing radiation on paper artifactsNukleonika60366566810.1515/nuka-2015-0090Open DOISearch in Google Scholar

Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257–260.ZagórskiZ. P.RafalskiA.1998Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometryRadiat. Phys. Chem5225726010.1016/S0969-806X(98)00151-0Search in Google Scholar

Milosavljevic, B. H., & Thomas, J. K. (2001) Effects of the degree of hydrolysis on radiation induced reactions in the poly(vinyl alcohol)–poly(vinyl acetate) system. Radiat. Phys. Chem., 62, 3–10.MilosavljevicB. H.ThomasJ. K.2001Effects of the degree of hydrolysis on radiation induced reactions in the poly(vinyl alcohol)–poly(vinyl acetate) systemRadiat. Phys. Chem6231010.1016/S0969-806X(01)00415-7Search in Google Scholar

von Sontag, C. (2001). Carbohydrates. In: C. D. Jonah & B. S. M. Rao (Eds.), Radiation chemistry. Present status and future trends (pp. 481–511). Amsterdam: Elsevier Sciences BV.von SontagC.2001CarbohydratesIn:JonahC. D.RaoB. S. M.(Eds.),Radiation chemistry. Present status and future trends481511AmsterdamElsevier Sciences BV10.1016/S0167-6881(01)80020-3Search in Google Scholar

Relleve, L., Nagasawa, N., Luan, L. Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., & dela Rosa, A. (2005). Degradation of carrageenan by radiation. Polym. Degrad. Stabil., 87, 403–410. DOI:10.1016/j.polymdegradstab.2004.09.003.RelleveL.NagasawaN.LuanL. Q.YagiT.AranillaC.AbadL.KumeT.YoshiiF.dela RosaA.2005Degradation of carrageenan by radiationPolym. Degrad. Stabil8740341010.1016/j.polymdegradstab.2004.09.003Open DOISearch in Google Scholar

Sharpatyi, V. A. (2003). Radiation chemistry of polysaccharides. 1. Mechanism of carbon monoxide and formic acid formation. High. Energ. Chem., 37(6), 369–372.SharpatyiV. A.2003Radiation chemistry of polysaccharides. 1. Mechanism of carbon monoxide and formic acid formationHigh. Energ. Chem37636937210.1023/B:HIEC.0000003393.88711.e2Search in Google Scholar

Cao, Sh., Zhang, H., Song, Y., Zhang, J., Yang, H., Jiang, L., & Dan, Y. (2015). Investigation of polypyr-role/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications. Appl. Surf. Sci., 342(1), 55–63.CaoSh.ZhangH.SongY.ZhangJ.YangH.JiangL.DanY.2015Investigation of polypyr-role/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applicationsAppl. Surf. Sci3421556310.1016/j.apsusc.2015.02.139Search in Google Scholar

Akhter, S., Allan, K., Buchanan, D., Cook, J. A., Campion, A., & White, J. M. (1988). XPS and IR study of X-ray induced degradation of PVA polymer film. Appl. Surf. Sci., 35(2), 241–258. https://doi.org/10.1016/0169-4332(88)90053-0.AkhterS.AllanK.BuchananD.CookJ. A.CampionA.WhiteJ. M.1988XPS and IR study of X-ray induced degradation of PVA polymer filmAppl. Surf. Sci352241258https://doi.org/10.1016/0169-4332(88)90053-0.10.1016/0169-4332(88)90053-0Search in Google Scholar

El-Sawy, N. M., El-Arnaouty, M. B., & Abdel, G. (2010). γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym. Plast. Technol. Eng., 49(2), 169–177.El-SawyN. M.El-ArnaoutyM. B.AbdelG.2010γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol filmsPolym. Plast. Technol. Eng49216917710.1080/03602550903284248Search in Google Scholar

Zainuddin, , Hill, D. J. T., & Le, T. T. (2001). An ESR study on γ-irradiated poly(vinyl alcohol). Radiat. Phys. Chem., 62, 283–291.ZainuddinHillD. J. T.LeT. T.2001An ESR study on γ-irradiated poly(vinyl alcohol)Radiat. Phys. Chem6228329110.1016/S0969-806X(01)00188-8Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other