1. bookVolume 65 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Efficient reading of thermoluminescent dosimeter signals using semiconductor detectors

Published Online: 23 Oct 2020
Volume & Issue: Volume 65 (2020) - Issue 4 (December 2020)
Page range: 223 - 227
Received: 13 Sep 2019
Accepted: 30 Mar 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this experimental work was to examine whether semiconductor photodetectors may be applied for the efficient reading of thermoluminescent dosimeter (TLD) signals. For this purpose, a series of experiments have been performed at the Department of Physics, Warsaw University of Technology, in cooperation with the Central Laboratory for Radiological Protection (CLOR). Specifically, the measurement system proposed here has been designed to detect a signal from TLDs that use a semiconductor detector operating in conditions analogous to those met when using commercial devices equipped with a classic photomultiplier. For the experimental tests, the TLDs were irradiated with a beam of 137Cs radiation in the accredited Laboratory for Calibration of Dosimetric and Radon Instruments. Eventually, a comparison of the results obtained with a semiconductor detector (ID120) and a commercial TLD reader with a photomultiplier tube (RADOS) were made.

Keywords

1. Randall, J. T., & Wilkins, M. H. F. (1945). Phosphorescence and electron traps, Part I. The study of traps distributions. Science, 184(999), 365–389. https://doi.org/10.1098/rspa.1945.0024.10.1098/rspa.1945.0024Search in Google Scholar

2. Budzanowski, M., Saez-Vergara, J. C., Gomez-Ros, J. M., Romero Gutierrez, A. M., & Ryba, E. (1998). The fading of different peaks in LiF:Mg,Cu,P (MCP-N and GR-200A) TL detectors. Radiat. Meas., 29, 361–364. https://doi.org/10.1016/S1350-4487(98)00028-6.10.1016/S1350-4487(98)00028-6Search in Google Scholar

3. Bilski, P., Budzanowski, M., & Olko, P. (1997). Dependence of LiF:Mg,Cu,P (MCP-N) glow curve structure on dopant composition and thermal treatment. Radiat. Prot. Dosim., 69, 187–198. https://doi.org/10.1093/oxfordjournals.rpd.a031903.10.1093/oxfordjournals.rpd.a031903Search in Google Scholar

4. Hirning, C. R. (1992). Detection and determination limits for thermoluminescence dosimetry. Health Phys., 62, 223–227. DOI: 10.1097/00004032-199203000-00002.10.1097/00004032-199203000-000021735641Search in Google Scholar

5. Hamamatsu Photonics. (1998). Photomultiplier Tubes: construction and operating characteristics and connections to external circuits. Hamamatsu Photonics, K.K.Search in Google Scholar

6. Wegrzecka, I., Wegrzecki, M., Grynglas, M., Bar, J., Uszynski, A., Grodecki, R., Grabiec, P., Krzeminski, S., & Budzynski, T. (2004). Design and properties of silicon avalanche photodiodes. Opto-Electron. Rev., 12(1), 95–104.Search in Google Scholar

7. Brown, R. G. W., Jones, R., Rarity, J. G., & Ridley, K. D. (1987). Characterization of silicon avalanche photodiodes for photon correlation measurements 2: Active quenching. Appl. Opt., 26, 2383–2389. https://doi.org/10.1364/AO.26.002383.10.1364/AO.26.00238320489879Search in Google Scholar

8. Daudet, H., Dion, B., MacGregor, A. D., MacSween, D., McIntyre, R. J., Trottier, C., & Webb, P. P. (1993). Photon counting techniques with silicon avalanche photodiodes. Appl. Opt., 32, 3894–3900. https://doi.org/10.1364/AO.32.00389410.1364/AO.32.00389420830022Search in Google Scholar

9. Cova, S., Ghioni, M., Lotito, A., Rech, I., & Zappa, F. (2004). Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt., 51, 1267–1288. DOI: 10.1080/09500340408235272.10.1080/09500340408235272Search in Google Scholar

10. Lacaita, A., Zappa, F., Cova, S., & Lovati, P. (1996). Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors. Appl. Opt., 35, 2986–2996. https://doi.org/10.1364/AO.35.002986.10.1364/AO.35.00298621085450Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo