1. bookVolume 65 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Ablation of single-crystalline cesium iodide by extreme ultraviolet capillary-discharge laser

Published Online: 23 Oct 2020
Volume & Issue: Volume 65 (2020) - Issue 4 (December 2020)
Page range: 205 - 210
Received: 14 Nov 2019
Accepted: 30 Mar 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Extreme ultraviolet (XUV) capillary-discharge lasers (CDLs) are a suitable source for the efficient, clean ablation of ionic crystals, which are obviously difficult to ablate with conventional, long-wavelength lasers. In the present study, a single crystal of cesium iodide (CsI) was irradiated by multiple, focused 1.5-ns pulses of 46.9-nm radiation delivered from a compact XUV-CDL device operated at either 2-Hz or 3-Hz repetition rates. The ablation rates were determined from the depth of the craters produced by the accumulation of laser pulses. Langmuir probes were used to diagnose the plasma plume produced by the focused XUV-CDL beam. Both the electron density and electron temperature were sufficiently high to confirm that ablation was the key process in the observed CsI removal. Moreover, a CsI thin film on MgO substrate was prepared by XUV pulsed laser deposition; a fraction of the film was detected by X-ray photoelectron spectroscopy.

Keywords

1. Chrisey, D., & Hubler, G. (1994). Pulsed laser deposition of thin films. New York: Wiley.Search in Google Scholar

2. Fernández-Lima, F., Collado, V., Ponciano, C., Farenzena, L., Pedrero, E., & da Silveira, E. (2003). Laser ablation of CsI analyzed by delayed extraction. Appl. Surf. Sci., 217(1/4), 202–209. DOI: 10.1016/s0169-4332(03)00547-6.10.1016/S0169-4332(03)00547-6Search in Google Scholar

3. Brendel’, V. M., Bukin, V. V., Garnov, S. V., Bagdasarov, V. Kh., Denisov, N. N., Garanin, S. G., Terekhin, V. A., & Trutnev, Y. A. (2012). Fabrication of alkali halide UV photocathodes by pulsed laser deposition. Quantum Electron., 42(12), 1128–1132. DOI: 10.1070/qe2012v042n12abeh014916.10.1070/QE2012v042n12ABEH014916Search in Google Scholar

4. Breskin, A. (1996). CsI UV photocathodes: history and mystery. Nucl. Instrum. Methods Phys. Res. Section A-Accel. Spectrom. Detect. Assoc. Equ., 371(1/2), 116–136. DOI: 10.1016/0168-9002(95)01145-5.10.1016/0168-9002(95)01145-5Search in Google Scholar

5. Nikl, M. (2006). Scintillation detectors for x-rays. Meas. Sci. Technol., 17(4), R37–R54. DOI: 10.1088/0957-0233/17/4/r01.10.1088/0957-0233/17/4/R01Search in Google Scholar

6. Jaeglé, P., Sebban, S., Carillon, A., Jamelot, G., Klis-nick, A., Zeitoun, P., Rus, B., Nantel, M., Albert, F., & Ros, D. (1997). Ultraviolet luminescence of CsI and CsCl excited by soft x-ray laser. J. Appl. Phys., 81(5), 2406–2409. DOI: 10.1063/1.364246.10.1063/1.364246Search in Google Scholar

7. Hada, M., Zhang, D., Pichugin, K., Hirscht, J., Koch-man, M., Hayes, S. A., Manz, S., Gengler, R. Y. N., Wann, D. A., Seki, T., Moriena, G., Morrison, C. A., Matsuo, J., Sciaini, G., & Miller, R. J. D. (2014). Cold ablation driven by localized forces in alkali halides. Nature Commun., 5(1), 3863–3870. DOI: 10.1038/ncomms4863.10.1038/ncomms486324835317Search in Google Scholar

8. Juha, L., Bittner, M., Chvostova, D., Krasa, J., Kozlov, M., Pfeifer, M., Polan, J., Präg, A. R., Rus, B., Stupka, M., Feldhaus, J., Letal, V., Otcenasek, Z., Krzywinski, J., Nietubye, R., Pelka, J. B., Andrejczuk, A., Sobierajski, R., Ryc, L., Boody, F. P., Fiedorowicz, H., Bartnik, A. S., Mikolajczyk, J., Rakowski, R., Kubat, P., Pina, L., Horvath, M., Grisham, M. E., Vaschenko, G. O., Menoni, C. S., & Rocca, J. J. (2005). Short-wavelength ablation of molecular solids: pulse duration and wavelength effects. J. Microlithogr. Microfabr. Microsyst., 4(3), 033007. DOI: 10.1117/1.2037467.10.1117/1.2037467Search in Google Scholar

9. Juha, L., Bittner, M., Chvostova, D., Krasa, J., Otcenasek, Z., Präg, A., Ullschmied, J., Pientka, Z., Krzywinski, J., Pelka, J. B., Wawro, A., Grisham, M. E., Vaschenko, G., Menoni, C. S., & Rocca, J. J. (2005). Ablation of organic polymers by 46.9-nm-laser radiation. Appl. Phys. Lett., 86(3), 034109. DOI: 10.1063/1.1854741.10.1063/1.1854741Search in Google Scholar

10. Heinbuch, S., Grisham, M., Martz, D., & Rocca, J. (2005). Demonstration of a desk-top size high repetition rate soft x-ray laser. Opt. Express, 13(11), 4050–4055. DOI: 10.1364/opex.13.004050.10.1364/OPEX.13.004050Search in Google Scholar

11. Chung, P., Talbor, L., & Touryan, K. (1975). Electric probes in stationary and flowing plasmas. Berlin-Heidelberg-New York: Springer-Verlag.10.1007/978-3-642-65886-0Search in Google Scholar

12. Pira, P., Burian, T., Kolpaková, A., Tichý, M., Kudrna, P., Daniš, S., Juha, L., Lancok, J., Vysin, L., Civis, S., Zelinger, Z., Kubat, P., & Wild, J. (2014). Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser. J. Phys. D-Appl. Phys., 47(40), 405205. DOI: 10.1088/0022-3727/47/40/405205.10.1088/0022-3727/47/40/405205Search in Google Scholar

13. Vysin, L., Burian, T., Chalupsky, J., Grisham, M., Hajkova, V., Heinbuch, S., Jakubczak, K., Martz, D., Mocek, T., Pira, P., Polan, J., Rocca, J. J., Rus, B., Sobota, J., & Juha, L. (2009). Characterization of focused beam of desktop 10-Hz capillary-discharge 46.9-nm laser. Proc. SPIE, 7361, 73610O.Search in Google Scholar

14. Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Centr. Eur. J. Phys., 10(1), 181–188. DOI: 10.2478/s11534-011-0096-2.10.2478/s11534-011-0096-2Search in Google Scholar

15. Blejchař, T., Nevrlý, V., Vašinek, M., Dostál, M., Kozubková, M., Dlabka, J., Stachon, M., Juha, L., Bitala, P., Zelinger, Z., Pira, P., & Wild, J. (2016). Desorption/ ablation of lithium fluoride induced by extreme ultra-violet laser radiation. Nukleonika, 61(2), 131–138. DOI: 10.1515/nuka-2016-0023.10.1515/nuka-2016-0023Search in Google Scholar

16. Ševčíková, K., Nehasil, V., Vorokhta, M., Haviar, S., Matolín, V., Matolínová, I., Masek, K., Pis, I., Kobayashi, K., Kobata, M., Nagata, T., Matsushita, Y., & Yoshikawa, H. (2015). Altering properties of cerium oxide thin films by Rh doping. Mater. Res. Bull., 67, 5–13. DOI: 10.1016/j.materresbull.2015.02.059.10.1016/j.materresbull.2015.02.059Search in Google Scholar

17. Henke, B. L., Gullikson, E. M., & Davis, J. C. (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z = 1-92. Atom. Data Nucl. Data Tables, 54(2), 181–342.10.1006/adnd.1993.1013Search in Google Scholar

18. Pira, P., Burian, T., Vysin, L., Chalupsky, J., Lancok, J., Wild, J., Strizik, M., Zelinger, Z., Rocca, J. J., & Juha, L. (2011). Ablation of ionic crystals induced by capillary-discharge XUV laser. Proc. SPIE, 8077, 807719.10.1117/12.890406Search in Google Scholar

19. Ritucci, A., Tomassetti, G., Reale, A., Arrizza, L., Zuppella, P., Reale, L., Palladino, L., Flora, F., Bonfigli, F., Faenov, A., Pikuz, T., Kaiser, J., Nilsen, J., & Jankowski, A. F. (2006). Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam. Optics Lett., 31(1), 68–70. DOI: 10.1364/ol.31.000068.10.1364/OL.31.000068Search in Google Scholar

20. Budylin, B., & Vorobev, A. (1964). Effect of radiation on ionic structures. Jerusalem: Israel Program for Scientific Translations.Search in Google Scholar

21. Haglund, R. (1996). Microscopic and mesoscopic aspects of laser-induced desorption and ablation. Appl. Surf. Sci., 96/98, 1–13. DOI: 10.1016/0169-4332(95)00371-1.10.1016/0169-4332(95)00371-1Search in Google Scholar

22. Chalupský, J., Juha, L., Hájková, V., Cihelka, J., Vyšín, L., Gautier, J., Hajdu, J., Hau-Riege, S. P., Jurek, M., Krzywinski, J., London, R. A., Papalazarou, E., Pelka, J. B., Rey, G., Sebban, S., Sobierajski, R., Stojanovic, N., Tiedtke, K., Toleikis, S., Tschentscher, T., Valentin, C., Wabnitz, H., & Zeitoun, P. (2008). Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses. Opt. Express, 17(1), 208–217. DOI: 10.1364/oe.17.000208.10.1364/OE.17.00020819129890Search in Google Scholar

23. Frolov, O., Kolacek, K., Schmidt, J., Straus, J., Choukourov, A., & Pira, P. (2016). Ablation of LiF and CsI by EUV nanosecond laser pulse. In International Conference on X-ray Lasers (pp. 327–331). Cham, Switzerland: Springer.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo