1. bookVolume 65 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Remarks to history of radon activity concentration metrology

Published Online: 20 Mar 2020
Volume & Issue: Volume 65 (2020) - Issue 1 (March 2020)
Page range: 45 - 49
Received: 15 May 2019
Accepted: 13 Jan 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The radon issue has been known worldwide for dozens of years. Many scientific (ICRP Publication No. 137), technical (ICRU Report No. 88), and legislative (Council Directive 2013/59/EURATOM (EU-BSS)) documents have been published in the last decade. More and more attention is being paid to precise quantification to determine the concentration and consequent effects of various pollutants on human health worldwide. The quality of measurement and the variety of measurement techniques increase the need to unify measurement procedures and metrology continuity. Countries around the world are beginning to unify metrological procedures for determining different quantities based on international recommendations and standards. Not only for these reasons, it became more actual a need for more accurate radon activity concentration measurement and radon metrology unification. This paper summarizes the main remarks and technical aspects to the historical development of radon metrology.

Keywords

1. Röttger, A., Honig, A., & Linzmaier, D. (2014). Calibration of commercial radon and thoron monitors at stable activity concentrations. Appl. Radiat. Isot., 87, 44–47.10.1016/j.apradiso.2013.11.111Search in Google Scholar

2. Poncela, L. S. Q., Fernández, C. S., Gutiérrez-Villanueva, J. -L. G., Fuente Merino, I., Celaya González, S., Quindós López, L., Quindós López, J., Fernández Lopez, E., & Fernández Villar, A. (2016). The Laboratory of Natural Radiation (LRN) – a place to test radon instruments under variable conditions of radon concentration and climatic variables. Nukleonika, 61(3), 275–280. DOI: 10.1515/nuka-2016-0046.10.1515/nuka-2016-0046Search in Google Scholar

3. Hoover, H. C. & Hoover, L. H. (translators). (1950). Gregorius Agricola De re metallica: translated from the 1st Latin edition of 1556, with biographic introduction, annotation and appendices upon the development of mining methods, metallurgical processes, geology, mineralogy and mining law, from the earliest times to the 16th century. New York: Dover Publications.Search in Google Scholar

4. Rutherford, E., & Brooks, H. T. (1901). The new gas from radium. Trans. Roy. Soc. Canada, 7, 21–25.Search in Google Scholar

5. Cothern, C. R. (1987). History and uses. In C. R. Cothern & J. E. Smith Jr. (Eds.), Environmental radon (pp. 31–58). Switzerland: Springer.Search in Google Scholar

6. ICRU. (2012). Measurement and reporting of radon exposures. (ICRU Report No. 88). Journal of the ICRU, 12(2), 71. doi: 10.1093/jicru/ndv019.10.1093/jicru/ndv019Search in Google Scholar

7. Solomon, S. B., Knutson, E. O., Holub, R. F., Strong, J. C., & Keng, W. T. (1986). International intercalibration and intercomparison of radon, thoron and daughters measuring equipment. Nuclear Energy Agency OECD (NEA). (INIS-XN-172).Search in Google Scholar

8. Peggie, J. R., Gan, T. -H., & Solomon, S. B. (1993). Asian/Australasian Region Intercalibration and Intercomparison Programme for Radon, Thoron and Daughters.Search in Google Scholar

9. Röttger, A., Honig, A., Schmidt, V., Buchröder, H., Rox, A., Butterweck, G., Schuler, Ch., Maringer, F. J., Jachs, P., Edelmaier, R., Michielsen, N., Howarth, C. B., Miles, J. C. H., Vargas, A., Ortega, X., Burian, I., Turtiainen, T., & Hagberg, N. (2006). Radon activity concentration – a Euromet and BIPM supplementary comparison. Appl. Radiat. Isot., 64(10/11), 1102–1107.10.1016/j.apradiso.2006.02.086Search in Google Scholar

10. Picolo, J. L. (1996). Absolute measurement of radon 222 activity. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 369, 452–457.10.1016/S0168-9002(96)80029-5Search in Google Scholar

11. Liang, J., Yang, Z., Wang, L., Li, Z., Zhang, M., Liu, H., & Yuan, D. (2018). Development of the absolute standardization apparatus for radon-222 activity. Appl. Radiat. Isot., 134, 358–362.10.1016/j.apradiso.2017.07.05528827092Search in Google Scholar

12. Dersch, R. (2004). Primary and secondary measurements of 222Rn. Appl. Radiat. Isot., 60, 387–390.10.1016/j.apradiso.2003.11.04614987672Search in Google Scholar

13. Spring, P., Nedjadi, Y., Bailat, C., Triscome, G., & Bochud, F. (2006). Absolute activity measurement of radon gas at IRA-METAS. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 568(2), 752–759.10.1016/j.nima.2006.07.055Search in Google Scholar

14. Kim, B. C., Lee, K. B., Park, T. S., Lee, J. M., Lee, S. H., Oh, P. J., Lee, M. K., & Ahn, J. K. (2012). Development of the primary measurement standard for gaseous radon-222 activity. Appl. Radiat. Isot., 70, 1934–1939.10.1016/j.apradiso.2012.02.02022607994Search in Google Scholar

15. Sabot, B., Pierre, S., & Cassette, P. (2016). An absolute radon 222 activity measurement system at LNELNHB. Appl. Radiat. Isot., 118, 167–174.10.1016/j.apradiso.2016.09.00927642726Search in Google Scholar

16. Cliff, K. D., Holub, R. F., Knutson, E. O., Lettner, H., & Solomon, S. B. (1994). International intercomparison of measurements of radon and radon decay products, Badgastein, Austria, September, 29–30, 1991. Chilton, Didcot, Oxon: National Radiological Protection Board.Search in Google Scholar

17. Droullard, R. F., Davis, T. H., Smith, E. E., & Holub, R. F. (1984). Radiation hazards test facilities at the Denver Research Center. Denver, CO: US Bureau of Mines.Search in Google Scholar

18. Azimi-Garakani, D. (1992). A comparison of different radon chambers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 71(1), 99–102.10.1016/0168-583X(92)95347-TSearch in Google Scholar

19. Burian, I., Otahal, P., Vosahlik, J., & Pilecka, E. (2011). Czech primary radon measurement equipment. Radiat. Prot. Dosim., 145(2/3), 333–337.10.1093/rpd/ncr04121482617Search in Google Scholar

20. Ichitsubo, H., Yamada, Y., Shimo, M., & Koizumi, A. (2004). Development of a radon-aerosol chamber at NIRS – general design and aerosol performance. J. Aerosol Sci., 35, 217–232.10.1016/j.jaerosci.2003.08.002Search in Google Scholar

21. Skubacz, K., Chalupnik, S., Urban, P., & Wysocka, M. (2017). Radon chamber in the Central Mining Institute – The calibration facility for radon and radon progeny monitors. Radiat. Prot. Dosim., 177(1/2), 164–167.10.1093/rpd/ncx17729036377Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo