Open Access

Effect of electronic cigarette (EC) aerosols on particle size distribution in indoor air and in a radon chamber


Cite

1. WHO. (2008). Monitoring tobacco use and prevention policies prevalence of adult tobacco use in the 14 countries that completed the global adult tobacco survey.Search in Google Scholar

2. WHO. (2004). Tobacco smoke and involuntary smoking. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 83). Lyon: WHO, IARC.Search in Google Scholar

3. Glasser, A. M., Collins, L., Pearson, J. L., Abudayyeh, H., Niaura, R. S., Abrams, D. B., & Villanti, A. C. (2017). Overview of electronic nicotine delivery systems. Am. J. Prev. Med., 52(2), e33–e66. doi: 10.1016/j.amepre.2016.10.036.10.1016/j.amepre.2016.10.036525327227914771Open DOISearch in Google Scholar

4. Brown, C. J., & Cheng, J. M. (2014). Electronic cigarettes: product characterisation and design considerations. Tobacco Control, 23, ii4–ii10.10.1136/tobaccocontrol-2013-051476399527124732162Open DOISearch in Google Scholar

5. Abul, M., Prasad, S., Liles, T., & Cucullo, L. (2016). A decade of e-cigarettes: Limited research and unresolved safety concerns. Toxicology, 365, 67–75.10.1016/j.tox.2016.07.020499366027477296Search in Google Scholar

6. Grana, R., Benowitz, N., & Glantz, S. A. (2014). E-cigarettes: A scientific review. Circulation, 129, 1972–1986.10.1161/CIRCULATIONAHA.114.007667401818224821826Search in Google Scholar

7. Wieslander, G., Norbäck, D., & Lindgren, T. (2001). Experimental exposure to propylene glycol mist in aviation emergency training: Acute ocular and respiratory effects. Occup. Environ. Med., 58, 649–655.10.1136/oem.58.10.649174004711555686Open DOISearch in Google Scholar

8. Fuoco, F. C., Buonanno, G., Stabile, L., & Vigo, P. (2014). Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut., 184, 523–529.10.1016/j.envpol.2013.10.01024172659Search in Google Scholar

9. Sosnowski, T. R., & Odziomek, M. (2018). Particle size dynamics: Toward a better understanding of electronic cigarette aerosol interactions with the respiratory system. Front. Physiol., 9, article 853, 1–8. doi: 10.3389/fphys.2018.00853.10.3389/fphys.2018.00853604640830038580Open DOISearch in Google Scholar

10. Ciuzas, D., Prasauskas, T., Krugly, E., Sidaraviciute, R., Jurelionis, A., Seduikyte, L., Kauneliene, V., Wierzbicka, A., & Martuzevicius, D. (2015). Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality. Atmos. Environ., 118, 107–117.10.1016/j.atmosenv.2015.07.044Search in Google Scholar

11. Robinson, R. J., & Yu, C. P. (2001). Aerosol science and technology deposition of cigarette smoke particles in the human respiratory tract deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci. Technol., 34, 202–215.10.1080/027868201300034844Open DOISearch in Google Scholar

12. Ingebrethsen, B. J., Alderman, S. L., & Ademe, B. (2011). Coagulation of mainstream cigarette smoke in the mouth during puffing and inhalation. Aerosol Sci. Technol., 45(12), 1422–1428.10.1080/02786826.2011.596863Search in Google Scholar

13. Manigrasso, M., Buonanno, G., Fuoco, F. C., Stabile, L., & Avino, P. (2015). Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ. Pollut., 196, 257–267.10.1016/j.envpol.2014.10.01325463721Search in Google Scholar

14. Belka, L., Lizal, F., Jedelsky, J., Jicha, M., & Pospisil, J. (2017). Measurement of an electronic cigarette aerosol size distribution during a puff. EPJ Conf., 143, 02006. DOI: 10.1051/epjconf/201714302006.10.1051/epjconf/201714302006Open DOISearch in Google Scholar

15. Schripp, T., Markewitz, D., Uhde, E., & Salthammer, T. (2013). Does e-cigarette consumption cause passive vaping? Indoor Air, 23(1), 25–31.10.1111/j.1600-0668.2012.00792.x22672560Open DOISearch in Google Scholar

16. Yuness, M., Mohamed, A., AbdEl-hady, M., Moustafa, M., & Nazmy, H. (2015). Effect of indoor activity size distribution of 222Rn progeny in-depth dose estimation. Appl. Radiat. Isot., 97, 34–39.10.1016/j.apradiso.2014.12.00225528018Search in Google Scholar

17. Yuness, M., Mohamed, A., Nazmy, H., Moustafa, M., & Abd El-hady, M. (2016). Indoor activity size distribution of the short-lived radon progeny. Stoch. Environ. Res. Risk Assess., 30(1), 167–174.10.1007/s00477-015-1057-xSearch in Google Scholar

18. Mohamed, A., Abd El-hady, M., Moustafa, M., & Yuness, M. (2014). Deposition pattern of inhaled radon progeny size distribution in human lung. J. Radiat. Res. Appl. Sci., 7(3), 333–337.10.1016/j.jrras.2014.05.004Open DOISearch in Google Scholar

19. Mostafa, Y., Mohamed, A., Abd El-hady, M., Moustafa, M., & Nazmy, H. (2015). Indoor activity of short-lived radon progeny as critical parameter in dose assessment. Solid State Phenom., 238, 151–160.10.4028/www.scientific.net/SSP.238.151Search in Google Scholar

20. Mostafa, Y. A. M., Vasyanovich, M., Zhukovsky, M., & Zaitceva, N. (2015). Calibration system for radon EEC measurements. Radiat. Prot. Dosim., 164(4), 587–590.10.1093/rpd/ncv31625979737Search in Google Scholar

21. Khalaf, H. N., Vasyanovich, M., Mostafa, M. Y. A., & Zhukovsky, M. (2019). Comparison of radioactive aerosol size distributions (Activity, number, mass, and surface area). Appl. Radiat. Isot., 145, 95–100.10.1016/j.apradiso.2018.12.02230590349Search in Google Scholar

22. Nazmy, H., Mostafa, M. Y. A., & Zhukovsky, M. (2018). Particle size distribution of e-cigarette aerosols in indoor air. J. Radiat. Nucl. Appl., 3(2), 111–117.10.18576/jrna/030206Search in Google Scholar

23. Khalaf, H. N. B., Mostafa, M. Y. A., & Zhukovsky, M. (2018). Radiometric efficiency of analytical filters at different physical conditions. J. Radioanal. Nucl. Chem. https://doi.org/10.1007/s10967-018-6347-6.10.1007/s10967-018-6347-6Open DOISearch in Google Scholar

24. Vasyanovich, M., Mostafa, M. Y. A., & Zhukovsky, M. (2017). Ultrafine aerosol influence on the sampling by cascade impactor. Radiat. Prot. Dosim., 177(1/2), 49–52.10.1093/rpd/ncx16929036634Search in Google Scholar

25. Nazaroff, W. W. (1980). An improved technique for measuring working level of radon daughters in residences. Health Phys., 45, 509–523.Search in Google Scholar

26. Mostafa, Y. A. M., Vasyanovich, M., & Zhukovsky, M. (2016). Prototype of a primary calibration system for measurement of radon activity concentration. Appl. Radiat. Isot., 107, 109–112.10.1016/j.apradiso.2015.10.01426490512Search in Google Scholar

27. Mostafa, Y. A. M., Vasyanovich, M., & Zhukovsky, M. (2017). A primary standard source of radon-222 based on the HPGe detector. Appl. Radiat. Isot., 120, 101–105.10.1016/j.apradiso.2016.12.01227984708Search in Google Scholar

28. Zhukovsky, M., Rogozina, M., & Suponkina, A. (2014). Size distribution of radon decay products in the range 0.1–10 nm. Radiat. Prot. Dosim., 160(1/3), 192–195.10.1093/rpd/ncu08424711527Search in Google Scholar

29. Rogozina, M., Zhukovsky, M., Ekidin, A., & Vasyanovich, M. (2014). Thoron progeny size distribution in monazite storage facility. Radiat. Prot. Dosim., 162(1/2), 10–13.10.1093/rpd/ncu20825004938Search in Google Scholar

30. Biennann, A. H., & Sawyer, S. S. (1995). Attachment of radon progeny to cigarette-smoke aerosols. U.S. Department of Energy by Lawrence Livermore National Laboratory. (Contract no. W-740S-ENG-48).10.2172/78555Search in Google Scholar

31. Muller, W. J., Scherer, P. W., & Hess, G. D. (1990). A model of cigarette smoke particle deposition. Am. Ind. Hyg. Assoc. J., 51(5), 245–256.10.1080/152986690913696002346112Open DOISearch in Google Scholar

32. Morawska, L., & Phillips, C. R. (2007). Aerosol science and technology attachment of radon progeny to cigarette smoke aerosol attachment of radon progeny to cigarette smoke aerosol. Aerosol Sci. Technol., 17(3), 149–158.10.1080/02786829208959567Open DOISearch in Google Scholar

33. Tu, K. W., & Knutson, E. O. (1988). Indoor radon progeny particle size distribution measurements made with two different methods. Radiat. Prot. Dosim., 24(1/4), 251–255.10.1093/oxfordjournals.rpd.a080280Open DOISearch in Google Scholar

34. Holub, R. F., Knutson, E. O., & Solomon, S. (1988). Tests of the graded wire screen technique for measuring the amount and size distribution of unattached radon progeny. Radiat. Prot. Dosim., 24(9), 265–268.10.1093/oxfordjournals.rpd.a080283Open DOISearch in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other