1. bookVolume 63 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. II. Application of radiotracers in copper leaching from flotation tailings

Published Online: 18 Jan 2019
Page range: 131 - 137
Received: 02 Dec 2017
Accepted: 15 Oct 2018
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English

The use of radiotracers in the present study is intended to replace traditional steps of metal quantitative analysis (solution sampling and instrumental chemical analysis) and to allow real-time measurements of metal concentrations during the leaching process. In this study, 64Cu, an isotope of copper, was selected as a radiotracer. Samples of copper flotation tailings were irradiated in the Maria research reactor (Świerk, Poland) and mixed with an inactive portion of the milled fl otation waste. The leaching process was carried out in a glass reactor, and the radiation spectrum was measured using a gamma spectrometer. The material was then treated using various acids (sulphuric acid, nitric acid, acetic acid, citric acid, and ascorbic acid) in a wide range of their concentrations. Experiments with the radiotracer were conducted in sulphuric and nitric acids. The amount of the leached metal (copper) was calculated on the basis of the peak area ratio in the gamma-ray spectrum of the activated tailings and standard samples. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to analyse the metal content. Maximum recovery of 56% Cu was achieved using 9 M HNO3, whereas the recovery was lowest for ascorbic acid (<1%). Both analytical methods were compared, and the results presented in this paper are in good agreement with radiometric measurements obtained using ICP-MS analysis.

Keywords

1. Kijewski, P., & Downorowicz, S. (1987). Odpady pofl otacyjne rudy miedzi jako potencjalna rezerwa surowcowa. Fizykochemiczne Problemy Mineralurgii, 19, 205-211.Search in Google Scholar

2. Kisielowska, E., Kasińska-Pilut, E., & Jaśkiewicz, J. (2007). Badania nad wpływem wybranych czynników fi zykochemicznych na efektywność procesu bioługowania odpadów pofl otacyjnych przy wykorzystaniu grzybów pleśniowych z gatunku Aspergillus niger. Górnictwo i Geoinżynieria, 31(3/1), 247-255.Search in Google Scholar

3. Kotarska, I. (2012). Odpady wydobywcze z górnictwa miedzi w Polsce - bilans, stan zagospodarowania i aspekty środowiskowe. Cuprum, 4(65), 45-63.Search in Google Scholar

4. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min. Sci., 58(3), 969-978. DOI: 10.2478/amsc-2013-0068.10.2478/amsc-2013-0068Open DOISearch in Google Scholar

5. Łuszczkiewicz, A. (2000). Koncepcje wykorzystania odpadów fl otacyjnych z przeróbki rud miedzi w regionie legnicko-głogowskim. Inżynieria Mineralna, 1(1), 25-35.Search in Google Scholar

6. Ahmed, I. M., Nayl, A. A., & Daoud, J. A. (2016). Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc., 20, S280-S285. DOI: 10.1016/j.jscs.2012.11.003.10.1016/j.jscs.2012.11.003Open DOISearch in Google Scholar

7. Urosevic, D. M., Dimitrijevic, M. D., & Jankovic, Z. D. (2015). Recovery of copper from copper slag and copper slag fl otation tailings by oxidative leaching. Physicochem. Probl. Miner. Pro., 51(1), 73-82. DOI: 10.5277/ppmp150107.10.5277/ppmp150107Open DOISearch in Google Scholar

8. Mohanty, U. S., Rintala, L., Halli, P., Taskinen, P., & Lundström, M. (2018). Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal production. Metals, 8(1), 40(12 pp.). DOI: 10.3390/met8010040.Search in Google Scholar

9. Antonijević, M. M., Dimitrijević, M. D., Stevanović, Z. O., Serbula, S. M., & Bogdanovic, G. D. (2008). Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J. Hazard. Mater., 158(1), 23-34. DOI: 10.1016/j.jhazmat.2008.01.063.10.1016/j.jhazmat.2008.01.063Open DOISearch in Google Scholar

10. Barton, I., Ahn, J., & Lee, J. (2018). Mineralogical and metallurgical study of supergene ores of the mike Cu-Au (-Zn) deposit, Carlin trend, Nevada. Hydrometallurgy, 176, 176-191. DOI: 10.1016/j.hydromet.2018.01.022.Search in Google Scholar

11. Bulut, G. (2006). Recovery of copper and cobalt from ancient slag. Waste Manage. Res., 24(2), 118-124. DOI: 10.1177/0734242X06063350.10.1177/0734242X06063350Open DOISearch in Google Scholar

12. Muravyov, M. I., Fomchenko, N. V., Usoltsev, A. V., Vasilyev, E. A., & Kondrat’eva, T. F. (2012). Leaching of copper and zinc from copper converter slag fl otation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 119/120, 40-46. DOI: 10.1016/j.hydromet.2012.03.001.10.1016/j.hydromet.2012.03.001Open DOISearch in Google Scholar

13. Wang, Y., Wen, S., Feng, Q., Xian, Y., & Liu, D. (2015). Leaching characteristics and mechanism of copper fl otation tailings in sulfuric acid solution. Russ. J. Non-Ferrous Metals, 56(2), 127-133. DOI: 10.3103/ S1067821215020170.10.3103/S1067821215020170Open DOISearch in Google Scholar

14. Astuti, W., Hirajima, T., Sasaki, K., & Okibea, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Miner. Eng., 85, 1-16. DOI: 10.1016/j. mineng.2015.10.001.10.1016/j.mineng.2015.10.001Open DOISearch in Google Scholar

15. Irannajad, M., Meshkini, M., & Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochem. Probl. Miner. Pro., 49(2), 547-555. DOI: 10.5277/ppmp130215.10.5277/ppmp130215Open DOISearch in Google Scholar

16. Raza, N., Iqbal Zafar, Z., & Najam-ul-Haq (2013). An analytical model approach for the dissolution kinetics of magnesite ore using ascorbic acid as leaching agent. Int. J. Metals, Article ID 352496. DOI: 10.1155/2013/352496.10.1155/2013/352496Open DOISearch in Google Scholar

17. Dybczynski, R., Kulisa, K., Małusecka, M., Mandecka, M., Polkowska-Motrenko, H., Sterlinski, S., & Szopa, Z. (1990). A comprehensive study on the contents and leaching of trace elements from fl y-ash originating from Polish hard coal by NAA and AAS methods. Biol. Trace Elem. Res., 26(1), 335-345. DOI: 10.1007/BF02992688.10.1007/BF02992688Open DOISearch in Google Scholar

18. Zovko, E., & Pujić, Z. (1991). Application of neutron activation in the control of an ore disintegration process. J. Radioanal. Nucl. Chem., 154(6), 365-370. DOI: 10.1007/BF02169769.10.1007/BF02169769Open DOISearch in Google Scholar

19. Figueiredo, A. M. G., Avristcher, W., Masini, E. A., Diniz, S. C., & Abrão, A. (2002). Determination of lanthanides (La, Ce, Nd, Sm) and other elements in metallic gallium by instrumental neutron activation analysis. J. Alloy. Compd., 344(1/2), 36-39. DOI: 10.1016/S0925-8388(02)00301-8.10.1016/S0925-8388(02)00301-8Open DOISearch in Google Scholar

20. Vind, J., Alexandri, A., Vassiliadou, V., & Panias, D. (2018). Distribution of selected trace elements in the Bayer process. Metals, 8(5), 327(21 pp.). DOI: 10.3390/met8050327.10.3390/met8050327Open DOISearch in Google Scholar

21. Tsertsvadze, L. A., Dzadzamia, L. A., Petrashvili, Sh. G., Shutkerashvili, D. G., Kirkesali, E. I., Frontasyeva, M. V., Pavlov, S. S., & Gundorina, S. F. (2001). Development of the method of bacterial leaching of metals out of low-grade ores, rocks, and industrial wastes using neutron activation analysis. In K. Marinova, V. P. Perelygin, & P. Vater (Eds.), Radionuclides and heavy metals in environment (Vol. 5, pp. 245-257). (NATO Science Series, IV: Earth and Environmental Series). Dordrecht: Springer.Search in Google Scholar

22. Iller, E., & Thýn, J. (1994). Metody radioznacznikowe w praktyce przemysłowej. Warszawa: WNT.Search in Google Scholar

23. Smoliński, T., Rogowski, M., Brykała, M., Pyszynska, M., & Chmielewski, A. G. (2018). Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching. Nukleonika, 63(4), 123-129. DOI: 10.2478/nuka-2018-0015.10.2478/nuka-2018-0015Open DOISearch in Google Scholar

24. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier.Search in Google Scholar

25. Jaroszewicz, J., Marcinkowska, Z., & Pytel, K. (2014). Production of fi ssion product 99Mo using high-enriched uranium plates in Polish nuclear research reactor MARIA: Technology and neutronic analysis. Nukleonika, 59(2), 43-52. DOI: 10.2478/nuka-2014-0009.10.2478/nuka-2014-0009Open DOISearch in Google Scholar

26. Chmielewski, T. (2016). Hydrometalurgia w odzyskiwaniu metali z koncentratów KGHM. In 4 Konferencja międzynarodowa - Metale towarzyszące w przemyśle metali nieżelaznych pt. „Metale towarzyszące kluczem do efektywnego wykorzystania zasobów w gospodarce cyrkulacyjnej”, 15-17.06.2016. Wrocław, Poland.Search in Google Scholar

27. Petryka, L., & Przewlocki, K. (1983). Radiotracer investigations of benefication copper ore in the industrial flotation process. Isotopenpraxis Isot. Environ. Health Stud., 19(10), 339-341. DOI: 10.1080/10256018308544932.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo