1. bookVolume 63 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Rapid estimation of environmental radioactivity surrounding Xiangshan uranium deposits, Jiangxi province, Eastern China

Published Online: 18 Jan 2019
Volume & Issue: Volume 63 (2018) - Issue 4 (December 2018)
Page range: 113 - 121
Received: 18 Dec 2017
Accepted: 10 Sep 2018
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The surveys of terrestrial gamma dose rate, radon concentration indoor and in water and specific activity of radionuclides of soil were carried out in 14 villages and a town in Xiangshan uranium deposit and surrounding area, Jiangxi province, Eastern China, in 2017-2018, using a scintillator dosemeter, an ionization chamber and a high-purity germanium gamma spectrometer to study radiation status in these places after remediation. A radioactive hot spot was discovered in a village near the mining office, where specific activity of 238U, 226Ra, 232Th and 137Cs of soil was as high as 1433 ± 76 Bq/kg, 1210 ± 62 Bq/kg, 236 ± 13 Bq/kg and 17 ± 1.1 Bq/kg, respectively. The dose rate on a waste rock heap was about 2423 nGy/h. Approximately 50% of the houses in a village near the uranium mining site had radon concentrations that exceeded 160 Bq/m3. There was a significant positive correlation between indoor radon concentration and outdoor gamma dose rate (R2 = 0.7876). The abnormal radon concentration was observed in a rising spring sample providing residents with tap water up to 127.1 Bq/l. Four tap water samples and three of five well water samples exceeded the limit of radon concentration of drinking water in China (11.1 Bq/l). The mean annual effective doses from gamma dose rate data were 0.86 mSv/y and 1.13 mSv/y for indoor radon. The study shows that there are some radioactively contaminated places surrounding the Xiangshan uranium mine. The local outdoor dose rate averages may be used to estimate local indoor radon concentrations.

Keywords

1. Committee on the Biological Effects of Ionizing Radiations, National Research Council, National Academy of Sciences. (1999). The health effects of exposure to indoor radon. Washington: National Academy Press.Search in Google Scholar

2. UNSCEAR. (2000). Sources and effects of ionizing radiation. Vol. I: Sources. Vol. II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientific annexes. New York: United Nations.Search in Google Scholar

3. UNSCEAR. (2006). Sources-to-effects assessment for radon in homes and workplaces. Vienna: United Nations. Scientific Committee on the Effects of Atomic Radiation.Search in Google Scholar

4. Stegnar, P., Shishkov, I., & Burkitbayev, M. (2013). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in central Asia. J. Environ. Radioact., 123(3), 3-13. DOI: 10.1016/j.jenvrad.2012.12.005.10.1016/j.jenvrad.2012.12.00523291151Open DOISearch in Google Scholar

5. Lespukh, E., Stegnar, P., & Yunusov, M. (2013a). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Tajikistan. J. Environ. Radioact., 126(4), 147-155. DOI: 10.1016/j.jenvrad.2013.07.019.10.1016/j.jenvrad.2013.07.01923995244Open DOISearch in Google Scholar

6. Lespukh, E., Stegnar, P., & Usubalieva, A. (2013b). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Kyrgyzstan. J. Environ. Radioact., 123(3), 28-36. DOI: 10.1016/j.jenvrad.2012.11.013.10.1016/j.jenvrad.2012.11.01323260850Open DOISearch in Google Scholar

7. Lind, O. C., Stegnar, P., & Tolongutov, B. (2013). Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. J. Environ. Radioact., 123(3), 37-49. DOI: 10.1016/j.jenvrad.2012.07.010.10.1016/j.jenvrad.2012.07.01022898665Open DOISearch in Google Scholar

8. Carvalho, F. P., Madruga, M. J., & Reis, M. C. (2007). Radioactivity in the environment around past radium and uranium mining sites of Portugal. J. Environ. Radioact., 96, 39-46. DOI: 10.1016/j.jenvrad.2007.01.016.10.1016/j.jenvrad.2007.01.01617433852Search in Google Scholar

9. Tripathi, R. M., Sahoo, S. K., & Jha, V. N. (2008). Assessment of environmental radioactivity at uranium mining, processing and tailings management facility at Jaduguda, India. Appl. Radiat. Isot., 66(11), 1666-1670. DOI: 10.1016/j.apradiso.2007.12.019.10.1016/j.apradiso.2007.12.01918653352Open DOISearch in Google Scholar

10. Momčilović, M., Kovačević, J., & Dragović, S. (2010). Population doses from terrestrial exposure in the vicinity of abandoned uranium mines in Serbia. Radiat. Meas., 45(2), 225-230. DOI: 10.1016/j.radmeas.2010.01.035.10.1016/j.radmeas.2010.01.035Search in Google Scholar

11. Oyedele, J. A., Shimboyo, S., & Sitoka, S. (2010). Assessment of natural radioactivity in the soils of Rössing Uranium Mine and its satellite town in western Namibia, southern Africa. Nucl. Instrum. Meth. Phys. Res. Sect. A: Accel. Spectrom. Dect. Assoc. Equip., 619(1/3), 467-469.10.1016/j.nima.2010.01.068Search in Google Scholar

12. Araújo dos Santos Jr, J., dos Santos Amaral, R., Simones Cezar Menezes, R., Estevez Alvez, R. J., Marques do Nascimento Santos, J., Herrero Fernandez, Z., Dias Bezerra, J., da Silva, A., Rodriges Damascena, K. F., & de Almeida Maciel Neto, J. (2017). Influence of terrestrial radionuclides on environmental gamma exposure in a uranium deposit in Paraíba, Brazil. Ecotox. Environ. Safety, 141, 154-159. DOI: 10.1016/j.ecoenv.2017.02.004.10.1016/j.ecoenv.2017.02.00428342327Open DOISearch in Google Scholar

13. Pan, Y., Li, Y., & Xue, J. (2009). Status and countermeasures for decommissioning of uranium mine and mill facilities in China. Radiat. Prot., 29(3), 167-171. (in Chinese with English abstract).Search in Google Scholar

14. Xu, L., Wang, Y., & LÜ, J. (2002). Radioactive contamination of the environment as a result of uranium production: a case study at the abandoned Lincang uranium mine, Yunnan Province, China. Science in China (Series B), 45(Suppl.), 11-19. (in Chinese with English abstract).10.1007/BF02932202Search in Google Scholar

15. Yang, Y., Wu, X., & Jiang, Z. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl. Radiat. Isot., 63(2), 255-259. DOI: 10.1016/j.apradiso.2005.02.011.10.1016/j.apradiso.2005.02.011Open DOISearch in Google Scholar

16. Dai, M. (2006). Uranium resources potential and its prospecting direction in Jiangxi Province. East China Institute of Technology, 2006(Suppl.), 12-18. (in Chinese with English abstract).Search in Google Scholar

17. Liu, Y., Gu, L., & Hou, Z. (2002). Airborne radiometric survey. Geophys. Geochem. Explor., 26(4), 250-252. (in Chinese with English abstract).Search in Google Scholar

18. Zhang, W., Liu, D., & Li, Z. (2007). Comparative analysis of the erosion degree of deposits in the northwest and southeast parts of Xiangshan uranium ore field in Jiangxi. Geotectonica et Metallogenia, 31(3), 348-352. DOI: 10.3969/j.issn.1001-1552.2007.03.012. (in Chinese with English abstract).10.3969/j.issn.1001-1552.2007.03.012.()Open DOISearch in Google Scholar

19. Zhang, W., & Li, Z. (2005). Metallogenetic characteristics and material source of Zoujiashan uranium deposit, Jiangxi Province. Geoscience, 19(3), 369-374. DOI: 10.3969/j.issn.1000-8527.2005.03.008. (in Chinese with English abstract).10.3969/j.issn.1000-8527.2005.03.008.()Open DOISearch in Google Scholar

20. Sun, Z. (2004). Uranium sources of the Xiangshan uranium ore-field: geochemical evidence. Acta Mineralogica Sinica, 24(1), 19-24. DOI: 10.3321/j. issn:1000-4734.2004.01.004. (in Chinese with English abstract).10.3321/j.issn:1000-4734.2004.01.004.()Open DOISearch in Google Scholar

21. Tracerlab. (2017). ERS-RDM-2S Monitor for the determination of the Radon/Thoron-Gas- & Progenyconcentration Instruction-Manual Update Version - 2017.Search in Google Scholar

22. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. (2013). Determination of radionuclides in soil by gamma spectrometry. Beijing, China: Standard Press. (GB/T11743-2013). (in Chinese).Search in Google Scholar

23. US Environmental Protection Agency (US EPA). Radon in Water Sampling Program. EPA. (EERFMANUAL- 78-1).Search in Google Scholar

24. Li, T., Wang, N., & Li, S. (2015). Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China. Radiat. Prot. Dosim., 167(1/3), 59-64. DOI: 10.1093/rpd/ncv207.10.1093/rpd/ncv207Open DOISearch in Google Scholar

25. Wang, C., Liu, Y., & Liu, F. (2012). Effects of ventilation rate on concentrations of indoor radon and its progenies. Radiat. Prot., 32(1), 60-64 (in Chinese with English abstract).Search in Google Scholar

26. Sang, B., He, Q., & Wang, Z. (2003). Studies of indoor action level of radon in China. Chin. J. Radiol. Med. Prot., 23(6), 462-465. (in Chinese with English abstract).Search in Google Scholar

27. Wang, C., Pan, Z., & Liu, S. (2014). Investigation on indoor radon levels in some parts of China. Radiat. Prot., 34(2), 65-73. (in Chinese with English abstract).Search in Google Scholar

28. Bossew, P., Cinelli, G., & Hernández-Ceballos, M. (2016). Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate. J. Environ. Radioact., 166(Pt.2), 296-308.Search in Google Scholar

29. Stojanovska, Z., Boev, B., & Zunic, Z. S. (2016). Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments. Radiat. Environ. Biophys., 55, 171-183.10.1007/s00411-016-0640-y26943159Search in Google Scholar

30. UNSCEAR. (1993). Sources and effects of ionizing radiation. Vol. I: Sources; Vol. II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with scientific annexes. New York: United Nations.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo