1. bookVolume 63 (2018): Issue 3 (September 2018)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Investigation of thermal neutron detection capability of a CdZnTe detector in a mixed gamma-neutron radiation field

Published Online: 02 Nov 2018
Volume & Issue: Volume 63 (2018) - Issue 3 (September 2018)
Page range: 59 - 64
Received: 10 Nov 2017
Accepted: 29 Aug 2018
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this study was to investigate the thermal neutron measurement capability of a CdZnTe detector irradiated in a mixed gamma-neutron radiation field. A CdZnTe detector was irradiated in one of the irradiation tubes of a 241Am-Be source unit to determine the sensitivity factors of the detector in terms of peak count rate (counts per second [cps]) per neutron flux (in square centimeters per second) [cps/neutron·cm−2·s−1]. The CdZnTe detector was covered in a 1-mm-thick cadmium (Cd) cylindrical box to completely absorb incoming thermal neutrons via 113Cd(n,γ) capture reactions. To achieve, this Cd-covered CdZnTe detector was placed in a well-thermalized neutron field (f-ratio = 50.9 ± 1.3) in the irradiation tube of the 241Am-Be neutron source. The gamma-ray spectra were acquired, and the most intense gamma-ray peak at 558 keV (0.74 γ/n) was evaluated to estimate the thermal neutron flux. The epithermal component was also estimated from the bare CdZnTe detector irradiation because the epithermal neutron cutoff energy is about 0.55 eV at the 1-mm-thick Cd filter. A high-density polyethylene moderating cylinder box can also be fitted into the Cd filter box to enhance thermal sensitivity because of moderation of the epithermal neutron component. Neutron detection sensitivity was determined from the measured count rates from the 558 keV photopeak, using the measured neutron fluxes at different irradiation positions. The results indicate that the CdZnTe detector can serve as a neutron detector in mixed gamma-neutron radiation fields, such as reactors, neutron generators, linear accelerators, and isotopic neutron sources. New thermal neutron filters, such as Gd and Tb foils, can be tested instead of the Cd filter due to its serious gamma-shielding effect.

Keywords

1. Dumazert, J., Coulon, R., Lecomte, Q., Bertrand, G. H. V., & Hamel, M. (2018). Gadolinium for neutron detection in current nuclear instrumentation research: A review. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 882, 53–68.10.1016/j.nima.2017.11.032Search in Google Scholar

2. Coulon, R., Dumazert, J., Hamel, M., Bertrand, G., Carrel, F., Kondrasovs, V., & Boudergui, K. (2016). Implementation of gadolinium for neutron measurement systems based on plastic scintillators or semiconductors. In IEEE NSS Symposium Proceedings, 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) (pp. 1–6). Strasbourg.10.1109/NSSMIC.2016.8069792Search in Google Scholar

3. Dumazert, J., Coulon, R., Bertrand, G. H. V., Normand, S., Mechin, L., & Hamel, M. (2016). Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudospectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 819, 25–32.10.1016/j.nima.2016.02.083Search in Google Scholar

4. Fasasi, M., Jung, M., Siffert, P., & Teissier, C. (1988). Thermal neutron dosimetry with cadmium telluride detectors. Radiat. Prot. Dosim., 23, 429–431.10.1093/oxfordjournals.rpd.a080213Open DOISearch in Google Scholar

5. Miyake, A., Nishioka, T., Singh, S., Morii, H., Mimura, H., & Aoki, T. (2011). A CdTe detector with a Gd converter for thermal neutron detection. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 654, 390–393.10.1016/j.nima.2011.06.083Search in Google Scholar

6. Dumazert, J., Coulon, R., Kondrasovs, V., & Boudergui, K. (2017). Compensation scheme for online neutron detection using a Gd-covered CdZnTe sensor. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 857, 7–15.10.1016/j.nima.2017.03.018Search in Google Scholar

7. Schlesinger, T. E., & James, R. B. (1995). Semiconductors for room temperature nuclear detector applications (Vol. 43). Series Semiconductors and Semimetals. New York: Academic Press.Search in Google Scholar

8. He, Z., Knoll, G. K., Wehe, D. K., & Miyamoto, J. (1997). Position sensitive single carrier CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 388, 180–185.10.1016/S0168-9002(97)00318-5Search in Google Scholar

9. Yücel, H., Uyar, E., & Esen, A. N. (2012). Measurements on the spectroscopic performance of CdZnTe coplanar grid detectors. Appl. Radiat. Isot., 70, 1608–1615. DOI: 10.1016/j.apradiso.2012.04.027.10.1016/j.apradiso.2012.04.02722738836Open DOISearch in Google Scholar

10. González, R., Pérez, J. M., Vela, O., de Burgos, E., Oller, J. C., & Gostilo, V. (2005). Spectrometric response of large volume CdZnTe coplanar detectors. IEEE Trans. Nucl. Sci., 52(5), 2076–2084. DOI: 10.1109/TNS.2005.856887.10.1109/TNS.2005.856887Search in Google Scholar

11. Martín, A. M., Iñiguez, M. P., Luke, P. N., Barquero, R., Lorente, A., Morchón, J., Gallego, E., Quincoces, G., & Martí-Climent, J. M. (2009). Evaluation of CdZnTe as neutron detector around medical accelerators. Radiat. Prot. Dosim., 133(4), 193–199. DOI: 10.1093/rpd/ncp038.10.1093/rpd/ncp03819329512Open DOISearch in Google Scholar

12. EXFOR Database. (2017). https://wwwnds.iaea.org/exfor/servlet/X4sGetSubent?reqx=548&sub ID=311001490 (Access date: 7 September 2017).Search in Google Scholar

13. Yücel, H., Budak, M. G., Karadag, M., & Yuksel, A. O. (2014). Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 338, 139–144. DOI: 10.1016/j.nimb.2014.08.010.10.1016/j.nimb.2014.08.010Open DOISearch in Google Scholar

14. Yücel, H., & Karadag, M. (2004). Experimental determination of the α-shape factor in the 1/E1+α epithermal-isotopic neutron source-spectrum by dual monitor method. Ann. Nucl. Energy, 31(6), 681–695.10.1016/j.anucene.2003.10.002Search in Google Scholar

15. Karadag, M., Yücel, H., Tan, M., & Özmen, A. (2003). Measurement of thermal neutron cross-sections and resonance integrals for 71Ga(n,γ)72Ga and 75As(n, γ)76As by using 241Am-Be isotopic neutron source. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 501(2/3), 524–535.10.1016/S0168-9002(03)00408-XSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo