1. bookVolume 59 (2014): Issue 3 (August 2014)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Enzymatic oxidation of substituted tryptamines catalysed by monoamine oxidase

Published Online: 12 Sep 2014
Volume & Issue: Volume 59 (2014) - Issue 3 (August 2014)
Page range: 91 - 95
Received: 01 Mar 2013
Accepted: 26 Jun 2014
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The enzymatic deamination of 5-fl uorotryptamine and 5-hydroxytryptamine, 5-HT, catalysed by enzyme monoamine oxidase A (MAO-A, EC 1.4.3.4) was investigated using the kinetic (KIE) and solvent (SIE) isotope effects methods. The numerical values of deuterium isotope effects in the (1R) positions of 5-F-tryptamine were determined using non-competitive spectrophotomeric method. Isotopologue 5-F-[(1R)- -2H]-tryptamine, needed for kinetic studies was obtained by enzymatic decarboxylation of 5´-fl uoro-L-tryptophan, 5´-F-L-Trp, in fully deuteriated medium.

Keywords

1. Boyer, P. D., Lardy, H., & Myrback, K. (1963). The enzymes (Vol. 8, pp. 337-351). New York: Academic Press.Search in Google Scholar

2. Miller, J. R., & Edmondson, D. E. (1999). Structure- -activity relationships in the oxidation of para- -substituted benzylamine analogues by recombinant human liver monoamine oxidase A. Biochemistry, 38, 13670-13682.10.1021/bi990920ySearch in Google Scholar

3. Silverman, R. B., Hoffman, S. J., & Catus III, W. B. (1980). A mechanism for mitochondrial monoamine oxidase catalyzed amine oxidation. J. Am. Chem. Soc., 102, 7126-7128.10.1021/ja00543a052Search in Google Scholar

4. Tsugeno, Y., & Ito, A. (1997). A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J. Biol. Chem., 272, 14033-14036.10.1074/jbc.272.22.14033Search in Google Scholar

5. Yu, P. H. (1988). Three types of stereospecifi city and the kinetic deuterium isotope effects in the oxidative deamination of dopamine as catalyzed by different amine oxidases. Biochem. Cell Biol., 66, 853-861.10.1139/o88-097Search in Google Scholar

6. Yu, P. H., Bailey, B. A., Durden, D. A., & Boulton A. A. (1986). Stereospecifi c deuterium substitution at the α-carbon position of dopamine and its effect on oxidative deamination catalyzed by MAO-A and MAO-B from different tissues. Biochem. Pharmacol., 35, 1027-1036.10.1016/0006-2952(86)90094-8Search in Google Scholar

7. Yu, P. H., Kazakoff, C., Davis, B. A., & Boulton, A. A. (1982). Deuterium isotope effect on the enzymatic oxidation of dopamine and serotonin. Biochem. Pharmacol., 31, 3697-3698.10.1016/0006-2952(82)90601-3Search in Google Scholar

8. Kalgutkar, A. S., Deepak, K., Dalvie, D. K., Castagnoli, N. Jr., & Taylor, T. J. (2001). Interactions of nitrogen- -containing xenobitics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem. Res. Toxicol., 14, 1139-1162.10.1021/tx010073bSearch in Google Scholar

9. Kema, I. P., De Vries, E. G. E., & Muskiet, F. A. J. (2000). Clinical chemistry of serotonin and metabolites. J. Chromatogr. B, 747, 33-48.10.1016/S0378-4347(00)00341-8Search in Google Scholar

10. Semak, I., Korik, E., Naumova, M., Wortsman, J., & Slominski, A. (2004). Serotonin metabolism in rat skin: characterization by liquid chromatography-mass spectrometry. Arch. Biochem. Biophys., 421, 61-66.10.1016/j.abb.2003.08.03614678785Search in Google Scholar

11. Kang, S., Kang, K., Lee, K., & Back, K. (2007). Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Reports, 26, 2009-2015.10.1007/s00299-007-0405-917639402Search in Google Scholar

12. Komissarov, I. V., Abraments, I. I., & Samoilovich, I. M. (1989). Tryptamine as an endogenous modulator of neuronal sensitivity to serotonin. Neurophysiology, 21, 254-258.10.1007/BF01058225Search in Google Scholar

13. Jacob, M. S., & Presti, D. E. (2005). Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med. Hypotheses, 64, 930-937.10.1016/j.mehy.2004.11.005Search in Google Scholar

14. Hocck, D. R., & Floss, H. G. (1981). Preparation of stereospecifi cally α- and β-tritiated tryptamine and the stereochemistry of aromatic L-amino acid decarboxylase. J. Nat. Prod., 44, 759-762.10.1021/np50018a031Search in Google Scholar

15. Bomanji, J. B., Costa, D. C., & Ell, P. J. (2001). Clinical role of positron emission tomography in oncology. Lancet Oncol., 2, 157-64.10.1016/S1470-2045(00)00257-6Search in Google Scholar

16. Pacak, K., Eisenhofer, G., Carrasquillo, J. A., Chen, C. C, Li, Sheng-Ting, & Goldstein, D. S. (2001), 6-[18F] Fluorodopamine Positron Emission Tomographic (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension, 38, 6-8.10.1161/01.HYP.38.1.611463751Search in Google Scholar

17. Huskey, W. P. (1991). Origins and interpretations of heavy-atom isotope effects. In P. F. Cook (Ed.) Enzyme mechanism from isotope effects (pp. 37-73). Boca Raton: CRC Press.Search in Google Scholar

18. Schowen, R. I. (1972). Mechanistic deductions from solvent isotope effects. Prog. Phys. Org. Chem., 9, 275-329.10.1002/9780470171882.ch6Search in Google Scholar

19. Dragulska, S., & Kańska, M. (2014). Enzymatic synthesis of tryptamine and its halogen derivatives selectively labeled with hydrogen isotopes. J. Radioanal. Nucl. Chem., 299, 759-763.10.1007/s10967-013-2816-0451460726224955Search in Google Scholar

20. Ivanović, I. D., & Majkić-Singh, N. (1988). Determination of platelet monoamine oxidase by new continuous spectrophotometric method. J. Clin. Chem. Clin. Biochem., 26, 447-451.10.1515/cclm.1988.26.7.4473221175Search in Google Scholar

21. Wigley, L. J., Mantle, P. G., & Perry, D. A. (2006). Natural and directed biosynthesis of communes in alkaloids. Phytochemistry, 67, 561-569.10.1016/j.phytochem.2005.10.01116324729Search in Google Scholar

22. Gary, R., Bates, R. G., & Robinson, R. A. (1964). Second dissociation constant of deuterio phosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scale. J. Phys. Chem., 68, 3806-3809.10.1021/j100794a046Search in Google Scholar

23. Parkin, D. W. (1991). Methods for determination of competitive and noncompetitive Kinetic Isotope Effects. In P. F. Cook (Ed.) Enzyme mechanism from isotope effects (pp. 269-290). Boca Raton: CRC Press.Search in Google Scholar

24. Kadnikova, E. N., & Kostić N. M. (2002). Oxidation of ABTS by hydrogen peroxide catalyzed by horseradish peroxidase encapsulated into sol-gel glass. Effects of glass matrix on reactivity. J. Mol. Catal. B-Enzym., 18, 39-48.10.1016/S1381-1177(02)00057-7Search in Google Scholar

25. Pałka, K., Szymańska, J., & Kańska, M. (2012). The kinetic and solvent deuterium isotope effects in oxidation of putrescine catalyzed by enzyme diamine oxidase. Isot. Environ. Health Stud., 49, 3-8.10.1080/10256016.2012.68352522540261Search in Google Scholar

26. Papajak, E., Kwiecień, R. A., Rudziński, J., Sicińska, D., Kamiński, R., Szatkowski, Ł., Kurihara, T., Esaki, N., & Paneth, P. (2006). Mechanism of the reaction catalyzed by DL-2-haloacid dehalogenase as determined from Kinetic Isotope Effects. Biochemistry, 45, 6012-6017.10.1021/bi051955316681373Search in Google Scholar

27. Northrop, D. B. (1975). Steady-state analysis of kinetic isotope effects in enzymatic reactions. Biochemistry, 14, 2644-2650. 10.1021/bi00683a0131148173Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo