1. bookVolume 59 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Verification of the use of GEANT4 and MCNPX Monte Carlo Codes for Calculations of the Depth-Dose Distributions in Water for the Proton Therapy of Eye Tumours

Published Online: 08 Jul 2014
Volume & Issue: Volume 59 (2014) - Issue 2 (June 2014)
Page range: 61 - 66
Received: 26 Jun 2013
Accepted: 16 Apr 2014
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Verification of calculations of the depth-dose distributions in water, using GEANT4 (version of 4.9.3) and MCNPX (version of 2.7.0) Monte Carlo codes, was performed for the scatterer-phantom system used in the dosimetry measurements in the proton therapy of eye tumours. The simulated primary proton beam had the energy spectra distributed according to the Gauss distribution with the cut at energy greater than that related to the maximum of the spectrum. The energy spectra of the primary protons were chosen to get the possibly best agreement between the measured relative depth-dose distributions along the central-axis of the proton beam in a water phantom and that derived from the Monte Carlo calculations separately for the both tested codes. The local depth-dose differences between results from the calculations and the measurements were mostly less than 5% (the mean value of 2.1% and 3.6% for the MCNPX and GEANT4 calculations). In the case of the MCNPX calculations, the best fit to the experimental data was obtained for the spectrum with maximum at 60.8 MeV (more probable energy), FWHM of the spectrum of 0.4 MeV and the energy cut at 60.85 MeV whereas in the GEANT4 calculations more probable energy was 60.5 MeV, FWHM of 0.5 MeV, the energy cut at 60.7 MeV. Thus, one can say that the results obtained by means of the both considered Monte Carlo codes are similar but they are not the same. Therefore the agreement between the calculations and the measurements has to be verified before each application of the MCNPX and GEANT4 codes for the determination of the depth-dose curves for the therapeutic protons.

Keywords

1. Francis, Z., Incerti, S., Karamitros, M., Tran, H. N., & Villagrasa, C. (2011). Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nucl. Instrum. Meth. Phys. Res. B, 269, 2307-2311.10.1016/j.nimb.2011.02.031Search in Google Scholar

2. Garcia-Molina, R., Abril, I., De Vera, P., & Pau, H. (2013). Comments on recent measurements of the stopping power of liquid water. Nucl. Instrum. Meth. Phys. Res. B, 299, 51-53.10.1016/j.nimb.2013.01.038Search in Google Scholar

3. Konefał, A., Orlef, A., & Maniakowski, Z. (2010). Influence of the radiation field size and the depth in irradiated medium on energy spectra of the 6 MV X-ray beams from medical linac. Pol. J. Environ. Stud., 1, 115-118.Search in Google Scholar

4. Ottaviano, G., Picardi, L., Pillon, M., Ronsivalle, C., Sandri, S. (2014). The radiation fields around a proton therapy facility: A comparison of Monte Carlo simulations. Rad. Phys. Chem., 95, 236-239.10.1016/j.radphyschem.2013.01.014Search in Google Scholar

5. Jia, X., Schümann, J., Paganetti, H., & Jiang, S. B. (2012). GPU-based fast Monte Carlo dose calculation for proton therapy. Phys. Med. Biol., 57(23), 7783-7797.10.1088/0031-9155/57/23/7783447473723128424Search in Google Scholar

6. Konefał, A., Szaflik, P., & Zipper, W. (2010). Influence of the energy spectrum and the spatial spread of the proton beams used in the eye tumor treatment on the depth-dose characteristics. Nukleonika, 55(3), 313-316.Search in Google Scholar

7. Cirrone, G. A. P., Cuttone, G., Mazzaglia, S. E., Romano, F., Sardina, D., Agodi, C., Attili, A., Blancato, A. A., De Napoli, M., Di Rosa, F., Kaitaniemi, P., Marchetto, F., Petrovic, I., Ristic-Fira, A., Shin, J., Tarnavsky, N., Tropea, S., & Zacharatou, C. (2011). Hadrontherapy: a Geant4-based tool for proton/ion-therapy studies. Prog. Nucl. Sci. Technol., 2, 207-212.10.15669/pnst.2.207Search in Google Scholar

8. Lee, C. C., Lee, Y. J., Tung, C. J., Cheng, H. W., & Chao, T. C. (2014). MCNPX simulation of photon dose distribution in homogeneous and CT phantoms. Rad. Phys. Chem., 95, 302-304.10.1016/j.radphyschem.2012.12.046Search in Google Scholar

9. Sadrozinski, H. F., Johnson, R. P., MacAfee, S., Plumb, A., Steinberg, D., Zatserklyaniy, A., Bashkirov, V. A., Hurley, R. F., & Schulte, R. W. (2013). Development of a head scanner for proton CT. Nucl. Instrum. Meth. Phys. Res. A, 699, 205-210.10.1016/j.nima.2012.04.029352459323264711Search in Google Scholar

10. Titt, U., Bednarz, B., & Paganetti, H. (2012). Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use. Phys. Med. Biol., 57, 6381-6393.10.1088/0031-9155/57/20/6381349625722996039Search in Google Scholar

11. Kim, D. H., Suh, T. S., Kang, Y. N., Yoo, S. H., Pae, K. H., Shin, D., & Lee, S. B. (2013). Parametric study of a variable-magnetic-field-based energy-selection system for generating a spread-out Bragg peak with a laser-accelerated proton beam. J. Kor. Phys. Soc., 62(1), 59-66.10.3938/jkps.62.59Search in Google Scholar

12. Francis, Z. (2013). Molecular scale simulation of ionizing particles tracks for radiobiology and Hadron-therapy studies. Adv. Quan. Chem., 65, 79-110.10.1016/B978-0-12-396455-7.00004-2Search in Google Scholar

13. Konefał, A., Polaczek-Grelik, K., Orlef, A., Maniakowski, Z., & Zipper, W. (2006). Background neutron radiation in the vicinity of Varian Clinac-2300 medical accelerator working in the 20 MV mode. Pol. J. Environ. Stud., 15(4A), 177-180.Search in Google Scholar

14. Candela-Juan, C., Perez-Calatayud, J., Ballester, F., & Rivard, M. J. (2013). Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma. Med. Phys., 40(3), art. No. 033901.Search in Google Scholar

15. Stolarczyk, L., Olko, P., Cywicka-Jakiel, T., Ptaszkiewicz, M., Swakoń, J., Dulny, B., Horwacik, T., Obryk, B., & Wa-ligórski, M. P. R. (2010). Assessment of undesirable dose to eye-melanoma patients after proton radiotherapy. Radiat. Meas., 45, 1441-1444.10.1016/j.radmeas.2010.05.029Search in Google Scholar

16. Nikezic, D., Haque, A. K. M. M., & Yu, K. N. (2002). Absorbed dose delivered by alpha particles calculated in cylindrical geometry. J. Environ. Radioact., 60, 293-305.10.1016/S0265-931X(01)00089-3Search in Google Scholar

17. Besemer, A., Paganetti, H., & Bednarz. B. (2013). The clinical impact of uncertainties in the mean excitation energy of human tissue during proton therapy. Phys. Med. Biol., 58(4), 887-902.10.1088/0031-9155/58/4/887359000523337713Search in Google Scholar

18. Cywicka-Jakiel, T., Stolarczyk, L., Swakoń, J., Olko, P., & Waligórski, M. P. R. (2010). Individual patient shielding for a proton eye therapy facility. Radiat. Meas., 45, 1127-1129.10.1016/j.radmeas.2010.05.018Search in Google Scholar

19. Swakoń, J., Olko, P., Adamczyk, D., Cywicka-Jakiel, T., Dabrowska, J., Dulny, B., Grzanka, L., Horwacik, T., Kajdrowicz, T., Michalec, B., Nowaka, T., Ptaszkiewicz, M., Sowa, U., Stolarczyk, L., Waligorski, M. P. R. (2010). Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow. Radiat. Meas., 45, 1469-1471.10.1016/j.radmeas.2010.06.020Search in Google Scholar

20. Physics Reference Manual, May 2007.Search in Google Scholar

21. International Atomic Energy Agency. (2000). Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: IAEA. (TRS-398).Search in Google Scholar

22. MCNPX User's Manual, April 2002.Search in Google Scholar

23. Park, Y. S., Kim, J. H., Hong, G. B., Jung, I. S., & Yang, T. K. (2011). Proton beam energy determination using a device for range measurement of an accelerated high energy ion beam. J. Kor. Phys. Soc., 59(22), 679-685.10.3938/jkps.59.679Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo