Open Access

Width and Edge Beam Effects on the Ultimate Behaviour of RC Bridge Overhangs


Cite

1. Veganzones Muñoz JJ, Pacoste C, Pettersson L & Karoumi R: “Influence of Edge Beam on Behavior of Bridge Overhangs”. ACI Structural Journal, Vol. 115, 2018, pp. 957-70.10.14359/51702225Search in Google Scholar

2. Vaz Rodrigues R: “Shear Strength of Reinforced Concrete Bridge Deck Slabs”. Thesis No. 3739 (PhD Thesis). École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2007.Search in Google Scholar

3. Reissen K & Hegger J: “Experimental investigations on the effective width for shear of single span bridge deck slabs”. (“Experimentelle Untersuchungen zur mitwirkenden Breite für Querkraft von einfeldrigen Fahrbahnplatten”). Beton- und Stahlbetonbau, Vol. 108, No. 2, 2013, pp. 96-103. (In German).10.1002/best.201200064Search in Google Scholar

4. Lantsoght E O L, de Boer A, van der Veen C & Walraven J C. “Effective Width in Shear of Reinforced Concrete Solid Slab Bridges under Wheel Loads”. Proceedings, TRB 93rd Annual Meeting Compendium of Papers, Washington DC, 2014, pp. 12-16.Search in Google Scholar

5. Reissen K & Hegger J: “Experimental investigations on the shear-bearing behaviour of bridge deck cantilever slabs under wheel loads”. (“Experimentelle Untersuchungen zum Querkrafttragverhalten von auskragenden Fahrbahnplatten unter Radlasten”). Beton- und Stahlbetonbau, Vol. 108 (5), 2013, pp. 315-324. (In German).10.1002/best.201200072Search in Google Scholar

6. CEN [European Committee for Standardization]: “Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. EN 1992-1-1”. Brussels, Belgium, 2005.Search in Google Scholar

7. American Concrete Institute (ACI): “318-14 Building code requirements for structural concrete and commentary”. Farmington Hills, MI, USA, 2014, 520 pp.Search in Google Scholar

8. FIB: “Model code for concrete structures 2010”. Ernst & Sohn, Lausanne, Switzerland, 2010.Search in Google Scholar

9. Zanuy C & Gallego J M: “Discussion of Shear Design of RC Bridge Deck Slabs according to Eurocode 2 by Guenter Rombach and Matthias Kohl”. ASCE Journal of Bridge Engineering, Vol. 20, No. 9, 2015.10.1061/(ASCE)BE.1943-5592.0000715Search in Google Scholar

10. DAfStb German Committee for Structural Concrete Book 240. “Tools for calculation of internal forces and changes in shape of reinforced concrete members.” (“Deutscher Ausschuss für Stahlbeton Heft 240: Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetonbauwerken”). Berlin, 1976-1991. (In German).Search in Google Scholar

11. Reissen K & Hegger J: “Experimental Study on the Shear Capacity of Concrete Slabs”. Proceedings, IABSE-IASS Symposium 2011, London, September 2011, pp. 584.Search in Google Scholar

12. DIN German Design Code: “1045-1 Design and Construction of Concrete Reinforced Concrete and Prestressed Concrete”. (“Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauteilen”), Berlin, 2008. (In German).Search in Google Scholar

13. Reissen K & Hegger J: “Experimental investigations on the shear capacity of RC cantilever bridge deck slabs under concentrated loads - Influences of moment-shear ratio and an inclined compression zone”. Proceedings. 16th European Bridge Conference, Edinburgh, June 2015.Search in Google Scholar

14. Rombach G & Latte S: “Shear resistance of bridge decks without shear reinforcement”. Proceedings, fib Symposium, Tailor Made Concrete Structures, Amsterdam, May 2008, pp. 519-525.10.1201/9781439828410.ch86Search in Google Scholar

15. Reissen K, Classen M & Hegger J. “Shear in reinforced concrete slabs—Experimental investigations in the effective shear width of one-way slabs under concentrated loads and with different degrees of rotational restraint”. Structural Concrete, Vol. 19, No. 1, 2018, pp. 36-48.10.1002/suco.201700067Search in Google Scholar

16. Lantsoght EOL, van der Veen C, de Boer A & Walraven J C. “Transition from one-way to two-way shear in slabs under concentrated loads”. Magazine of Concrete Research, Vol. 67, 2015, pp. 909-22.10.1680/macr.14.00124Search in Google Scholar

17. Rombach G & Henze L: “Shear capacity of concrete slabs without shear reinforcement under concentrated loads close to support”. Proceedings, fib Symposium, Springer, Maastrich, June 2017, pp. 676-683.10.1007/978-3-319-59471-2_80Search in Google Scholar

18. Lubliner J, Oliver J, Oller S & Onate E: “A plastic-damage model for concrete”. International Journal of Solids and Structures, Vol. 25, No. 3, 1989, pp. 299-329.10.1016/0020-7683(89)90050-4Open DOISearch in Google Scholar

19. Lee J & Fenves GL: “Plastic-Damage Model for Cyclic Loading of Concrete Structures”. Journal of Engineering Mechanics, Vol. 124, No. 8, 1998, pp. 892-900.10.1061/(ASCE)0733-9399(1998)124:8(892)Search in Google Scholar

20. Cornelissen H, Hordijk D & Reinhardt H. “Experimental determination of crack softening characteristics of normal weight and lightweight concrete”. Heron, Vol. 31, No. 2, 1986, pp. 45-56.Search in Google Scholar

21. Broo H, Lundgren K & Plos M. “A guide to non-linear finite element modelling of shear and torsion in concrete bridges”. Report 2008:18. Chalmers University of Technology, Dept. of Civil and Environmental Engineering, Gothemburg, Sweden, 2008, pp. 21.Search in Google Scholar

eISSN:
2545-2819
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Materials Sciences, Materials Processing