Open Access

New Measurement Method of Oil-Water Two-Phase Flow with High Water Holdup and Low Rate by Phase State Regulation


Cite

Han, L. F., Wang, H. X., Cong, Y., Liu, X. B., Han, J., Fu, C. F. (2020). Oil phase velocity measurement of oil-water two-phase flow with low velocity and high water cut using the improved ORB and RANSAC algorithm. Measurement Science Review, 20 (2), 93-103. https://doi.org/10.2478/msr-2020-0012 Search in Google Scholar

Li, Z. C., Fan, C. L. (2020). A novel method to identify the flow pattern of oil-water two-phase flow. Journal of Petroleum Exploration and Production Technology, 10 (8), 3723-3732. https://doi.org/10.1007/s13202-020-00987-1 Search in Google Scholar

Karimi, M. A., Arsalan, M., Shamim, A. (2016). Low cost and pipe conformable microwave-based water-cut sensor. IEEE Sensors Journal, 16 (21), 7636-7645. https://doi.org/10.1109/JSEN.2016.2599644 Search in Google Scholar

Wu, H., Tan, C., Dong, X. X., Dong, F. (2015). Design of a conductance and capacitance combination sensor for water holdup measurement in oil-water two-phase flow. Flow Measurement and Instrumentation, 46, 218229. https://doi.org/10.1016/j.flowmeasinst.2015.06.026 Search in Google Scholar

Liu, D. X., Liu, L., Bai, D. F., Diao, Y. L. (2023). Experimental study of loss coefficients for laminar oil-water two-phase flow through micro-scale flow restrictions. Experimental Thermal and Fluid Science, 140, 110747. https://doi.org/10.1016/j.expthermflusci.2022.110747 Search in Google Scholar

Men, X. Y., Yan, X., Chen, Y. C., Li, Z. B, Gong, H. J. (2017). Gas-water phase flow production stratified logging technology of coalbed methane wells. Petroleum Exploration and Development, 44 (2), 315-320. https://doi.org/10.1016/S1876-3804(17)30036-8 Search in Google Scholar

Dzemic, Z., Sirok, B., Bizjan, B. (2018). Turbine flowmeter response to transitional flow regimes. Flow Measurement and Instrumentation, 59, 18-22. https://doi.org/10.1016/j.flowmeasinst.2017.11.006 Search in Google Scholar

Chen, J. H., Anastasiou, C., Chen, S. B., Basha, N. M., Kahouadji, L., Arcucci, R., Angeli, P., Matar, O. K. (2023). Computational fluid dynamics simulations of phase separation in dispersed oil-water pipe flows. Chemical Engineering Science, 267, 239-248. https://doi.org/10.1016/j.ces.2022.118310 Search in Google Scholar

Dayev, Z. A. (2022). General theory of invariant methods for measuring the flow rate of multicomponent flows. Flow Measurement and Instrumentation, 85, 102145. https://doi.org/10.1016/j.flowmeasinst.2022.102145 Search in Google Scholar

Huang, J. C., Sheng, B. X., Ji, H. F., Huang, Z. Y., Wang, B. L., Li, H. Q. (2019). A new contactless bubble/slug velocity measurement method of gas-liquid two-phase flow in small channels. IEEE Transactions on Instrumentation and Measurement, 68 (9), 3253-3267. https://doi.org/10.1109/TIM.2018.2877825 Search in Google Scholar

Karimi, M. A., Arsalan, M., Shamim, A. (2021). Extended throat venturi based flow meter for optimization of oil production process. IEEE Sensors Journal, 21 (16), 17808-17816. https://doi.org/10.1109/JSEN.2021.3083532 Search in Google Scholar

Kang, W., Lee, S. H., Lee, S. J., Ha, Y. C., Jung, S. S. (2018). Effect of ultrasonic noise generated by pressure control valves on ultrasonic gas flowmeters. Flow Measurement and Instrumentation, 60, 95-104. https://doi.org/10.1016/j.flowmeasinst.2018.02.023 Search in Google Scholar

Liang, G. H., Ren, S. J., Dong, F. (2020). An inclusion boundary and conductivity simultaneous estimation method for ultrasound reflection guided electrical impedance tomography. IEEE Sensors Journal, 20 (19), 11578-11587. https://doi.org/10.1109/JSEN.2020.2998852 Search in Google Scholar

Zhao, N., Wang, Y. J., Liu, X. B. (2011). The research of measuring method by thermal trace correlation in the horizontal well. Petroleum Instruments, 25, 57-59. https://doi.10.3969/j.issn.1004-9134.2011.02.021 Search in Google Scholar

Lin, D., Grundmann, J., Eltner, A. (2019). Evaluating image tracking approaches for surface velocimetry with thermal tracers. Water Resources Research, 55 (4), 3122-3136. https://doi.org/10.1029/2018WR024507 Search in Google Scholar

Yang, H. Y., Qing, G. M., Chen, Y., Zhao, H. (2020). Optimization of coil width and magnetic field switching speed for non-contacted electromagnetic flowmeter. IEEE Sensors Journal, 20 (10), 5329-5335. https://doi.org/10.1109/JSEN.2020.2969211 Search in Google Scholar

Gao, S., Ma, H. (2022). A study on structure improvement scheme of electromagnetic flow sensor for slurry flow measurement. Measurement & Control, 55 (5-6), 519-534. https://doi.org/10.1177/00202940211064589 Search in Google Scholar

Sharma, P., Lao, L., Falcone, G. (2018). A microwave cavity resonator sensor for water-in-oil measurements. Sensors and Actuators B: Chemical, 202, 200-210. https://doi.10.1016/j.snb.2018.01.211 Search in Google Scholar

Karimi, M. A., Arsalan, M., Shamim, A. (2017). A low-cost, orientation-insensitive microwave water-cut sensor printed on a pipe surface. In 2017 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 1218-1221. https://doi.org/10.1109/MWSYM.2017.8058822 Search in Google Scholar

Guo, S. N., Sun, L. J., Zhang, T., Yang, W. L., Yang, Z. (2013). Analysis of viscosity effect on turbine flowmeter performance based on experiments and CFD simulations. Flow Measurement and Instrumentation, 34 (5), 42-52. https://doi.org/10.1016/j.flowmeasinst.2013.07.016 Search in Google Scholar

Zhu, K., Chen, X. Y., Qu, M. G., Yang, D. F., Hu, L., Xu, J. H., Xie, J. (2020). An ultrasonic flowmeter for liquid flow measurement in small pipes using AlN piezoelectric micromachined ultrasonic transducer arrays. Journal of Micromechanics and Microengineering, 30 (12), 125010. https://doi.org/10.1088/1361-6439/abc100 Search in Google Scholar

Zhai, L. S., Zhang, H. X., Jin, N. D. (2020). Prediction of pressure drop for segregated oil-water flows in small diameter pipe using modified two-fluid model. Experimental Thermal and Fluid Science, 114, 110078. https://doi.org/10.1016/j.expthermflusci.2020.110078 Search in Google Scholar

Han, L. F., Hou, Y. D., Wang, Y. J., Liu, X. B., Han, J., Xie, R. H., Mu, H. W., Fu, C. F. (2019). Measurement of velocity of sand-containing oil-water two-phase flow with super high water holdup in horizontal small pipe based on thermal tracers. Flow Measurement and Instrumentation, 69, 101622. https://doi.org/10.1016/j.flowmeasinst.2019.101622 Search in Google Scholar

Casacuberta, N., Smith, J. N. (2012). Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans. Annual Review of Marine Science, 428, 182-190. https://doi.org/10.1146/annurev-marine-032122-112413 Search in Google Scholar

Yadav, A., Pant, H. J., Roy, S. (2020). Velocity measurements in convective boiling flow using radioactive particle tracking technique. Aiche Journal, 66 (1), 16782. https://doi.org/10.1002/aic.16782 Search in Google Scholar

Kohli, M. A., Schmoldt, J. P. (2022). Feasibility of UXO detection via pulsed neutron-neutron logging. Applied Radiation and Isotopes, 188, 110403. https://doi.org/10.1016/j.apradiso.2022.110403 Search in Google Scholar

Wang, X. G., Zhang, F., Ma, H. Y., Zhou, L. W. (2021). A novel borehole/annulus holdup calculation method based on pulsed neutron logging. Applied Radiation and Isotopes, 168, 109479. https://doi.org/10.1016/j.apradiso.2020.109479 Search in Google Scholar

Jin, N. D., Yu, C., Han, Y. F., Yang, Q. Y., Ren, Y. Y., Zhai, L. S. (2021). The performance characteristics of electromagnetic flowmeter in vertical low-velocity oil-water two-phase flow. IEEE Sensors Journal, 21 (1), 464-475. https://doi.org/10.1109/JSEN.2020.3013327 Search in Google Scholar

Perera, K., Time, R. W., Pradeep, C., Kumara, A. S. (2021). Interfacial wave analysis of low viscous oil-water flow in upwardly inclined pipes. Chemical Engineering Science, 196, 444-462. https://doi.org/10.1016/j.ces.2018.11.014 Search in Google Scholar

Huang, L., Deng, S., Chen, M., Guan, J. F. (2017). Numerical simulation and experimental study on a deoiling rotary hydrocyclone. Chemical Engineering Science, 172, 107-116. https://doi.org/10.1016/j.ces.2017.06.030m Search in Google Scholar

Liu, L., Zhao, L. X., Yang, X., Wang, W. H., Xu, B. R., Liang, B. (2019). Innovative design and study of an oil-water coupling separation magnetic hydrocyclone. Separation and Purification Technology, 213, 389-400. https://doi.org/10.1016/j.seppur.2018.12.051 Search in Google Scholar

Li, S., Li, R. N., Wang, Z. C., Xu, D. K., Yan, Y. J., Xu, Y., Li, J. S., Chen, X. (2019). Fluid-structure interaction vibration response analysis of the hydrocyclone under periodic excitation. IEEE Access, 7, 146273-146281. https://doi.org/10.1109/ACCESS.2019.2945837 Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing