Open Access

Study on Time-frequency Imaging of Ultrasonic Detection with Phase Shifted Fiber Bragg Grating Sensing


Cite

Tsuda, H., Lee, J.R., Guan, Y., Takatsubo, J. (2007). Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor. Optical Fiber Technology, 13 (3), 209-214. https://doi.org/10.1016/j.yofte.2006.12.003 Search in Google Scholar

Takeda, N., Okabe, Y., Kuwahara, J. (2005). Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using lamb wave sensing. Composites Science and Technology, 65 (15-16), 2575-2587. https://doi.org/10.1016/j.compscitech.2005.07.014 Search in Google Scholar

Lam, P.M., Lau, K.T., Ling, H.Y., Su, Z., Tam, H.Y. (2009). Acousto-ultrasonic sensing for delaminated GFRP composites using an embedded FBG sensor. Optics & Lasers in Engineering, 47 (10), 1049-1055. https://doi.org/10.1016/j.optlaseng.2009.01.010 Search in Google Scholar

Frieden, J., Cugnoni, J., Botsis, J., Gmuer, T. (2012). Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors – part І: Impact detection and localization. Composite Structures, 94 (2), 438-445. https://doi.org/10.1016/j.compstruct.2011.08.003 Search in Google Scholar

Gomez, J., Jorge, I., Durana, G., Arrue, J., Zubia, J., Aranguren, G., Montero, A., Lopez, I. (2013). Proof of concept of impact detection in composites using fiber Bragg grating arrays. Sensors, 13 (9), 11998-12011. https://doi.org/10.3390/s130911998 Search in Google Scholar

Wu, Q., Okabe, Y. (2012). High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Optics Express, 20 (27), 28353-28362. https://doi.org/10.1364/OE.20.028353 Search in Google Scholar

Wu, Q., Okabe, Y., Saito, K., Yu, F. (2014). Sensitivity distribution properties of a phase-shifted fiber Bragg grating sensor to ultrasonic waves. Sensors, 14 (1), 1094-1105. https://doi.org/10.3390/s140101094 Search in Google Scholar

Wu, Q., Okabe, Y. (2014). Novel real time acousto ultrasonic sensors using two phase-shifted fiber Bragg gratings. Journal of Intelligent Material Systems and Structures, 25 (5), 640-646. https://doi.org/10.1177/1045389X13483028 Search in Google Scholar

Yu, F., Wu, Q., Okabe, Y., Kobayashi, S., Saito, K. (2016). The identification of damage types in carbon fiber reinforced plastic cross-ply laminates using a novel fiber-optic acoustic emission sensor. Structural Health Monitoring, 15 (1), 93-103. https://doi.org/10.1177/1475921715624503 Search in Google Scholar

Yu, F.M., Okabe, Y., Wu, Q., Shigeta, N. (2016). A novel method of identifying damage types in carbon fiber-reinforced plastic cross-ply laminates based on acoustic emission detection using a fiber-optic sensor. Composites Science & Technology, 135, 116-122. https://doi.org/10.1016/j.compscitech.2016.09.017 Search in Google Scholar

Fink, T., Qi, Z., Ahrens, W., Ming, H. (2012). Study of π-phase-shifted, Fiber Bragg gratings for ultrasonic detection. In Fiber Optic Sensors and Applications IX. SPIE Vol. 8370. https://doi.org/10.1117/12.920810 Search in Google Scholar

Rosenthal, A., Razansky, D., Ntziachristos, V. (2011). High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Optics Letters, 36 (10), 1833-1835. https://doi.org/10.1364/OL.36.001833 Search in Google Scholar

Liu, T., Han, M. (2012). Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection. IEEE Sensors Journal, 12 (7), 2368-2373. https://doi.org/10.1109/JSEN.2012.2189383 Search in Google Scholar

Guo, J., Xue, S., Zhao, Q., Yang, C. (2014). Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating. Optics Express, 22 (16), 19573-19580. https://doi.org/10.1364/OE.22.019573 Search in Google Scholar

Zhang, F.Y., Jiang, M.S., Sui, Q.M., Lü, S.S., Jia, S. (2017). Acoustic emission localization technique based on fiber Bragg grating sensing network and signal feature reconstruction. Acta Physica Sinica, 66 (7), 074210. https://doi.org/10.7498/aps.66.074210 Search in Google Scholar

Sante, R.D., Bastianini, F. (2015). Temperature-compensated fibre Bragg grating ‐based sensor with variable sensitivity. Optics & Lasers in Engineering, 75, 5-9. https://doi.org/10.1016/j.optlaseng.2015.06.002 Search in Google Scholar

Zhu, Y., Hu, L., Liu, Z., Han, M. (2019). Ultrasensitive ultrasound detection using an intracavity phase-shifted fiber Bragg grating in a self-injection-locked diode laser. Optics Letters, 44 (22), 5525-5528. https://doi.org/10.1364/OL.44.005525 Search in Google Scholar

Xu, Y., Zhang, L, Gao, S., Lu, P., Mihailov, S., Bao, X. (2017). Highly sensitive fiber random grating-based random laser sensor for ultrasound detection. Optics Letters, 42 (7), 1353-1356. https://doi.org/10.1364/OL.42.001353 Search in Google Scholar

Lee, J.R., Tsuda, H., Toyama, N. (2007). Impact wave and damage detections using a strain-free fiber Bragg grating ultrasonic receiver. NDT&E International, 40 (1), 85-93. https://doi.org/10.1016/j.ndteint.2006.07.001 Search in Google Scholar

Dwivedi, K.M., Trivedi, G., Khijwania, S.K., Osuch, T. (2020). Design and numerical analysis of a highly sensitive ultrasonic acoustic sensor based on π-phase-shifted fiber Bragg grating and fiber Mach-zehnder interferometer interrogation. Metrology and Measurement Systems (Metrologia i Systemy Pomiarowe), 27 (2), 289-300. https://doi.org/10.24425/mms.2020.132775 Search in Google Scholar

Liu, T., Han, M. (2012). Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection. IEEE Sensors Journal, 12 (7), 2368-2373. https://doi.org/10.1109/JSEN.2012.2189383 Search in Google Scholar

Zhai, H.Z., Wu, Q., Xiong, K., Wang, R. (2019). π-phase-shifted fiber Bragg grating for strain measurement with high spatial resolution. IEEE Photonics Technology Letters, 31 (16), 1335-1338. https://doi.org/10.1109/LPT.2019.2926849 Search in Google Scholar

Jiao, J.P., Drinkwater, B.W., Neild, S.A., Wilcox, P.D. (2009). Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structural health monitoring. Smart Materials & Structures, 18 (6), 065006. https://doi.org/10.1088/0964-1726/18/6/065006 Search in Google Scholar

Wang, X., Tse, P.W., Mechefske, C.K., Hua, M. (2010). Experimental investigation of reflection in guided wave-based inspection for characterization of pipeline defects. NDT&E International, 43 (4), 365-374. https://doi.org/10.1016/J.NDTEINT.2010.01.002 Search in Google Scholar

Zhu P., Yan H. (2022). Damage identification of flexible PVC substrate based on wavelet decomposition and limit learning machine. Journal of Vibration and Shock, 13, 220-227. https://doi.org/10.13465/j.cnki.jvs.2022.13.028 Search in Google Scholar

Liu, X., Jiang, Z., Yan, Z. (2012). Improvement of accuracy in damage localization using frequency slice wavelet transform. Shock and Vibration, 19 (4), 585-596. https://doi.org/10.3233/SAV-2011-0652 Search in Google Scholar

Lemistre, M., Balageas, D. (2001). Structure health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures, 10 (3), 504-511. https://doi.org/10.1088/0964-1726/10/3/312 Search in Google Scholar

Tang, X., Li, Q. (2016). Time Frequency Analysis and Wavelet Transform (2nd Ed.). China Science Press, ISBN 9787030475428. Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing