Open Access

Testing the Performance of the Video Camera to Monitor the Vertical Movements of the Structure via a Specially Designed Steel Beam Apparatus


Cite

[1] Morichika, S., Sekiya, H., Zhu, Y., Hirano, S., Maruyama, O. (2021). Estimation of displacement response in steel plate girder bridge using a single MEMS accelerometer. IEEE Sensors Journal, 21 (6), 8204-8208. https://doi.org/10.1109/JSEN.2021.305169710.1109/JSEN.2021.3051697 Search in Google Scholar

[2] Koch, I.E., Veronez, M.R., da Silva, R.M., Klein, I., Matsuoka, M.T., Gonzaga, L., Larocca, A.P.C. (2017). Least trimmed squares estimator with redundancy constraint for outlier detection in GNSS networks. Expert Systems with Applications, 88, 230-237. https://doi.org/10.1016/j.eswa.2017.07.00910.1016/j.eswa.2017.07.009 Search in Google Scholar

[3] Dos Santos, R.C., Larocca, A.P.C., de Araújo Neto, J.O., Barbosa, A.C.B., Oliveira, J.V.M. (2019). Detection of a curved bridge deck vibration using robotic total stations for structural health monitoring. Journal of Civil Structural Health Monitoring, 9, 63-76. https://doi.org/10.1007/s13349-019-00322-110.1007/s13349-019-00322-1 Search in Google Scholar

[4] Dong, C.-Z., Celik, O., Catbas, F.N., O’Brien, E.J., Taylor, S. (2020). Structural displacement monitoring using deep learning-based full field optical flow methods. Structure and Infrastructure Engineering, 16 (1). https://doi.org/10.1080/15732479.2019.165007810.1080/15732479.2019.1650078 Search in Google Scholar

[5] Beben, D. (2016). Application of interferometry method for dynamic continuous testing of bridges. Periodica Polytechnica Civil Engineering, 60 (3), 387-395. https://doi.org/10.3311/PPci.867910.3311/PPci.8679 Search in Google Scholar

[6] Fei, Q.G., Xu, Y.L., NG, C.L., Wong, K.Y., Chan, W.Y., Man, K.L. (2007). Structural health monitoring oriented finite element model of Tsing Ma bridge tower. International Journal of Structural Stability and Dynamics, 07 (04), 647-668. https://doi.org/10.1142/S021945540700250210.1142/S0219455407002502 Search in Google Scholar

[7] Wang, X., Zhao, Q., Xi, R., Li, C., Li, G., Li, L. (2021). Review of bridge structural health monitoring based on GNSS: From displacement monitoring to dynamic characteristic identification. IEEE Access, 9, 80043-80065. https://doi.org/10.1109/ACCESS.2021.308374910.1109/ACCESS.2021.3083749 Search in Google Scholar

[8] Ju, M., Park, C., Kim, G. (2015). Structural Health Monitoring (SHM) for a cable stayed bridge under typhoon. KSCE Journal of Civil Engineering, 19 (4), 1058-1068. https://doi.org/10.1007/s12205-015-0039-310.1007/s12205-015-0039-3 Search in Google Scholar

[9] Lovse, J.W., Teskey, W.F., Lachapelle, G., Cannon, M.E. (1995). Dynamic deformation monitoring of tall structure using GPS technology. Journal of Surveying Engineering, 121 (1), 35-40. DOI: 10.1061/(ASCE)0733-9453(1995)121:1(35).10.1061/(ASCE)0733-9453(1995)121:1(35) Search in Google Scholar

[10] Bisnath, S., Gao, Y. (2009). Precise point positioning. GPS World, 20, 43-50. Search in Google Scholar

[11] Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T. (2013). High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units. Journal of Geodesy 87 (4), 361– 372. https://doi.org/10.1007/s00190-012-0606-z10.1007/s00190-012-0606-z Search in Google Scholar

[12] Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102 (B3), 5005-5017. https://doi.org/10.1029/96JB0386010.1029/96JB03860 Search in Google Scholar

[13] Erkoç, M.H., Doğan, U., Yıldız, H., Sezen, E. (2022). Estimation of vertical land motion along the south and west coast of Turkey from multi-sensor observations. Advances in Space Research, 70 (7), 1761-1772. https://doi.org/10.1016/j.asr.2022.06.02210.1016/j.asr.2022.06.022 Search in Google Scholar

[14] Moschas, F., Avallone, A., Saltogianni, V., Stiros, S.C. (2014). Strong motion displacement waveforms using 10-Hz precise point positioning GPS: An assessment based on free oscillation experiments. Earthquake Engineering & Structural Dynamics, 43 (12), 1853-1866. https://doi.org/10.1002/eqe.242610.1002/eqe.2426 Search in Google Scholar

[15] Wieser, A., Brunner, F. (2002). Analysis of bridge deformations using continuous GPS measurements. In 2nd Conference of Engineering Surveying (INGEO 2002). Bratislava, Slovakia: Slovak University of Technology, 45-52. Search in Google Scholar

[16] Çelebi, M. (2000). GPS in dynamic monitoring of longperiod structures. Soil Dynamics and Earthquake Engineering, 20 (5-8), 477-483. https://doi.org/10.1016/S0267-7261(00)00094-410.1016/S0267-7261(00)00094-4 Search in Google Scholar

[17] Watson, C., Watson, T., Coleman, R. (2007). Structural monitoring of cable-stayed bridge: Analysis of GPS versus modeled deflections. Journal of Surveying Engineering, 133 (1), 23-28. DOI: 10.1061/(ASCE)0733-9453(2007)133:1(23).10.1061/(ASCE)0733-9453(2007)133:1(23) Search in Google Scholar

[18] Schaal, R.E., Larocca, A.P. (2009). Measuring dynamic oscillations of a small span cable-stayed footbridge: Case study using L1 GPS receivers. Journal of Surveying Engineering, 135 (1), 33-37. DOI: 10.1061/(ASCE)0733-9453(2009)135:1(33).10.1061/(ASCE)0733-9453(2009)135:1(33) Search in Google Scholar

[19] Ashkenazi, V., Roberts, G.W. (1997). Experimental monitoring of the Humber Bridge using GPS. Proceedings of the Institution of Civil Engineers - Civil Engineering, 120 (4), 177-182. https://doi.org/10.1680/icien.1997.2981010.1680/icien.1997.29810 Search in Google Scholar

[20] Tamura, Y., Matsui, M., Pagnini, L.-C., Ishibashi, R., Yoshida, A. (2002). Measurement of wind-induced response of buildings using RTK-GPS. Journal of Wind Engineering and Industrial Aerodynamics, 90 (12-15), 1783-1793. https://doi.org/10.1016/S0167-6105(02)00287-810.1016/S0167-6105(02)00287-8 Search in Google Scholar

[21] Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., Mattone, M. (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event. Journal of Geophysical Research: Solid Earth, 116 (B2). https://doi.org/10.1029/2010JB00783410.1029/2010JB007834 Search in Google Scholar

[22] Genrich, J.F., Bock, Y. (2006). Instantaneous geodetic positioning with 10-50 Hz GPS measurements: Noise characteristics and implications for monitoring networks. Journal of Geophysical Research: Solid Earth, 111 (B3). https://doi.org/10.1029/2005JB00361710.1029/2005JB003617 Search in Google Scholar

[23] Psimoulis, P.A., Stiros, S.C. (2012). A supervised learning computer-based algorithm to derive the amplitude of oscillations of structures using noisy GPS and Robotic Theodolites (RTS) records. Computers & Structures, 92-93, 337-348. https://doi.org/10.1016/j.compstruc.2011.10.01910.1016/j.compstruc.2011.10.019 Search in Google Scholar

[24] Moschas, F., Stiros, S. (2015) Dynamic deflections of a stiff footbridge using 100-Hz GNSS and accelerometer data. Journal of Surveying Engineering, 141 (4). DOI: 10.1061/(ASCE)SU.1943-5428.0000146.10.1061/(ASCE)SU.1943-5428.0000146 Search in Google Scholar

[25] Feng, D., Feng, M.Q. (2018). Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection – A review. Engineering Structures, 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.01810.1016/j.engstruct.2017.11.018 Search in Google Scholar

[26] Busca, G., Cigada, A., Mazzoleni, P., Zappa, E. (2013). Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Experimental Mechanics, 54 (2), 255-271. https://doi.org/10.1007/s11340-013-9784-810.1007/s11340-013-9784-8 Search in Google Scholar

[27] Feng, M.Q., Fukuda, Y., Feng, D., Mizuta, M. (2015). Nontarget vision sensor for remote measurement of bridge dynamic response. Journal of Bridge Engineering, 20 (12), 04015023. DOI: 10.1061/(ASCE)BE.1943-5592.0000747.10.1061/(ASCE)BE.1943-5592.0000747 Search in Google Scholar

[28] Farrar, C.R., Darling, T.W., Migliori, A., Baker, W.E. (1999). Microwave interferometers for non-contact vibration measurements on large structures. Mechanical Systems and Signal Processing, 13 (2), 241-253. https://doi.org/10.1006/mssp.1998.121610.1006/mssp.1998.1216 Search in Google Scholar

[29] Huang, M., Hou, C., Li, Y., Liu, H., Wang, F., Chen, T., Yang, Z., Tang, G., Sun, L. (2019). A low-frequency MEMS piezoelectric energy harvesting system based on frequency up-conversion mechanism. Micromachines, 10 (10), 639. https://doi.org/10.3390/mi1010063910.3390/mi10100639684339731554221 Search in Google Scholar

[30] Li, H., Ou, J., Zhao, X., Zhou, W., Li, H., Zhou, Z., Yang, Y. (2006). Structural health monitoring system for the Shandong Binzhou Yellow River highway bridge. Computer-Aided Civil and Infrastructure Engineering, 21 (4), 306-317. https://doi.org/10.1111/j.1467-8667.2006.00437.x10.1111/j.1467-8667.2006.00437.x Search in Google Scholar

[31] Erdoğan, H. (2006). Mühendislik Yapılarındaki Dinamik Davranısların Jeodezik Ölçmelerle Belirlenmesi. Doctoral dissertation, Yıldız Technical University, Institute of Science and Engineering, Istanbul, Turkey. (in Turkish) Search in Google Scholar

[32] Yigit, C.O. (2016). Experimental assessment of post-processed kinematic Precise Point Positioning method for structural health monitoring, Geomatics, Natural Hazards and Risk, 7 (1), 360-383. https://doi.org/10.1080/19475705.2014.91772410.1080/19475705.2014.917724 Search in Google Scholar

[33] Yigit, C.O., Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures, Geomatics, Natural Hazards and Risk, 8 (2), 893-904. https://doi.org/10.1080/19475705.2017.128416010.1080/19475705.2017.1284160 Search in Google Scholar

[34] Pan, B., Xie, H., Xu, B., Dai, F. (2006). Performance of sub-pixel registration algorithms in digital image correlation. Measurement Science and Technology, 17 (6), 1615-1621. https://doi.org/10.1088/0957-0233/17/6/04510.1088/0957-0233/17/6/045 Search in Google Scholar

[35] Erkoç, M.H., Doğan, U. (2022). Regional tidal modelling using tide gauges and satellite altimetry data in south-west coast of Turkey. KSCE Journal of Civil Engineering, 26, 4052-4061. https://doi.org/10.1007/s12205-022-0320-110.1007/s12205-022-0320-1 Search in Google Scholar

[36] Kim, K.B., Lee, S.B. (2002). Determination of gravity anomaly using satellite altimeter data in the Great Lakes. KSCE Journal of Civil Engineering, 6 (3), 313-320. https://doi.org/10.1007/BF0282915310.1007/BF02829153 Search in Google Scholar

[37] Ata, E., Pirti, A., Hoşbaş, R.G. (2018). Testing height accuracy in CORS-TR technique. In FIG Congress 2018. Istanbul, Turkey. Search in Google Scholar

[38] Wdowinski, S., Bock, Y., Zhang, J., Fang, P., Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102 (B8), 18057-18070. https://doi.org/10.1029/97JB0137810.1029/97JB01378 Search in Google Scholar

[39] Avcı N., Alemdar, F. (2019). Sarsma masası testlerindeki dinamik parametrelerin görüntü işleme yöntemi ile ölçülmesi. DÜMF Mühendislik Dergisi, 10 (3), 1099-1112. https://doi.org/10.24012/dumf.524027 (in Turkish)10.24012/dumf.524027 Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing