1. bookVolume 22 (2022): Issue 1 (February 2022)
Journal Details
First Published
07 Mar 2008
Publication timeframe
6 times per year
access type Open Access

Using Signal Phase in Computerized Systems of Non-destructive Testing

Published Online: 21 Jan 2022
Volume & Issue: Volume 22 (2022) - Issue 1 (February 2022)
Page range: 32 - 43
Received: 09 Nov 2021
Accepted: 13 Jan 2022
Journal Details
First Published
07 Mar 2008
Publication timeframe
6 times per year

Phase methods of measuring physical quantities and phase measuring equipment are widely used in various fields of science and technology. The article proposes a signal processing methodology based on a combination of the discrete Hilbert transform (DHT) and deterministic, as well as statistical methods of phase measurement. This methodology makes it possible to more fully use the information resource of the measuring signal phase in a wide range of the signal-to-noise ratio. It can be used both in computerized measurement and testing systems, as well as in the processing of measurement data. The benefits of the DHT are considered. The possibility of using statistics of directional data for phase measurements is shown. Circular statistics, such as the mean ring value, circular variance and the resulting vector length, were proposed for use in the phase measurements. Some examples of the use of this methodology in measurements and non-destructive testing are given.


[1] Kuts, Y., Kochan, O., Lysenko, I., Huminilovych, R. (2021). Methodology for measuring phase shifts of signals using discrete Hilbert transform. In 13th International Conference on Measurement. IEEE, 18-21. https://doi.org/10.23919/Measurement52780.2021.9446811.10.23919/Measurement52780.2021.9446811 Search in Google Scholar

[2] Witkovsky, V., Frollo, I. (2020). Measurement science is the science of sciences-there is no science without measurement. Measurement Science Review, 20 (1), 1-5. https://doi.org/10.2478/msr-2020-0001.10.2478/msr-2020-0001 Search in Google Scholar

[3] Jun, S., Przystupa, K., Beshley, M., Kochan, O., Beshley, H., Klymash, M., Wang, J., Pieniak, D. (2020). A cost-efficient software based router and traffic generator for simulation and testing of IP network. Electronics, 9 (1), 40. https://doi.org/10.3390/electronics9010040.10.3390/electronics9010040 Search in Google Scholar

[4] Michalowska, J., Tofil, A., Józwik, J., Pytka, J., Legutko, S., Siemiatkowski, Z., Lukaszewicz, A. (2019). Monitoring the risk of the electric component imposed on a pilot during light aircraft operations in a high-frequency electromagnetic field. Sensors, 19 (24), 5537. https://doi.org/10.3390/s19245537.10.3390/s19245537696096331847421 Search in Google Scholar

[5] Wang, J., Kochan, O., Przystupa, K., Su, J. (2019). Information-measuring system to study the thermocouple with controlled temperature field. Measurement Science Review, 19 (4), 161-169. https://doi.org/10.2478/msr-2019-0022.10.2478/msr-2019-0022 Search in Google Scholar

[6] Macek, W. (2021). Correlation between fractal dimension and areal surface parameters for fracture analysis after bending-torsion fatigue. Metals, 11 (11), 1790. https://doi.org/10.3390/met11111790.10.3390/met11111790 Search in Google Scholar

[7] Machin, G., Bojkovski, J., del Campo, D., Dogan, A.K., Fischer, J., Hermier, Y., Merlone, A., Nielsen, J., Peruzzi, A., Ranostaj, J., Strnad, R. (2014). A European roadmap for thermometry. International Journal of Thermophysics, 35 (3-4), 385-394. https://doi.org/10.1007/s10765-013-1554-4.10.1007/s10765-013-1554-4 Search in Google Scholar

[8] Filtz, J.R., Wu, J., Stacey, C., Hollandt, J., Monte, C., Hay, B., Hameury, J., Villamanan, M.A., Thurzo- Andras, E., Sarge, S. (2015). A European roadmap for thermophysical properties metrology. International Journal of Thermophysics, 36 (2-3), 516-528. https://doi.org/10.1007/s10765-014-1807-x.10.1007/s10765-014-1807-x Search in Google Scholar

[9] Glowacz, A. (2021). Ventilation diagnosis of angle grinder using thermal imaging. Sensors, 21 (8), 2853. https://doi.org/10.3390/+s21082853. Search in Google Scholar

[10] Shu, C., Kochan, O. (2013). Method of thermocouples self verification on operation place. Sensors & Transducers, 160 (12), 55-61. Search in Google Scholar

[11] Jun, S., Kochan, O., Kochan, R. (2016). Thermocouples with built-in self-testing. International Journal of Thermophysics, 37 (4), 37. https://doi.org/10.1007/s10765-016-2044-2.10.1007/s10765-016-2044-2 Search in Google Scholar

[12] Schnaid, F. (2009). In Situ Testing in Geomechanics: The Main Tests. CRC Press, ISBN 9780429152603. https://doi.org/10.1201/9781482266054.10.1201/9781482266054 Search in Google Scholar

[13] Chen, Y., Yang, J., Xu, Y., Jiang, S., Liu, X., Wang, Q. (2016). Status self-validation of sensor arrays using gray forecasting model and bootstrap method. IEEE Transactions on Instrumentation and Measurement, 65 (7), 1626-1640. doi.org/10.1109/TIM.2016.2540942.10.1109/TIM.2016.2540942 Search in Google Scholar

[14] Guzela, S., Dzianik, F. (2020). The recuperative heat exchangers – the mean temperature difference in the special cases of heat transfer. Journal of Mechanical Engineering (Strojnícky časopis), 70 (1), 47-56. http://dx.doi.org/10.2478/scjme-2020-0005.10.2478/scjme-2020-0005 Search in Google Scholar

[15] Yeromenko, V., Kochan, O. (2013). The conditional least squares method for thermocouples error modeling. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). IEEE, Vol. 1, 157-162. https://doi.org/10.1109/IDAACS.2013.6662661.10.1109/IDAACS.2013.6662661 Search in Google Scholar

[16] Mitryasova, O., Pohrebennyk, V., Cygnar, M., Sopilnyak, I. (2016). Environmental natural water quality assessment by method of correlation analysis. In 16th International Multidisciplinary Scientific GeoConference (SGEM 2016), 317-324. https://doi.org/10.5593/SGEM2016/B52/S20.041. Search in Google Scholar

[17] Hu, Z., Su, J., Jotsov, V., Kochan, O., Mykyichuk, M., Kochan, R., Sasiuk, T. (2016). Data science applications to improve accuracy of thermocouples. In 2016 IEEE 8th International Conference on Intelligent Systems (IS). IEEE, 180-188. https://doi.org/10.1109/IS.2016.7737419.10.1109/IS.2016.7737419 Search in Google Scholar

[18] Glowacz, A. (2021). Fault diagnosis of electric impact drills using thermal imaging. Measurement, 171, 108815. https://doi.org/10.1016/j.measurement.2020.108815.10.1016/j.measurement.2020.108815 Search in Google Scholar

[19] Ignatiev, V., Nikitin, A., Yushanov, S. (2013). Measurement of phase shifts of quasiharmonic signals. Numerical Methods and Programming, 14 (4), 424-431. (in Russian) Search in Google Scholar

[20] Kuts, Y., Shcherbak, L. (2009). Statistical Phase Measurement. Ternopil, Ukraine: Ternopil Ivan Puluj National Technical University Press. (in Ukrainian) Search in Google Scholar

[21] Dorozhovets, M., Motalo, V., Stadnyk, B., Vasyliuk, V., Borek, R., Kovalchyk, A. (2005). Fundamentals of Metrology and Measuring Techniques, Volume 2. Lviv, Ukraine: Lviv Polytechnic National University Press. (in Ukrainian) Search in Google Scholar

[22] Tu, Y., Yang, H., Zhang, H., Liu, X. (2014). CMF signal processing method based on feedback corrected ANF and Hilbert transformation. Measurement Science Review, 14 (1), 41-47. https://doi.org/10.2478/msr-2014-0007.10.2478/msr-2014-0007 Search in Google Scholar

[23] Liu, C.Y., Wang, C.Y. (2020). Investigation of phase pattern modulation for digital fringe projection profilometry. Measurement Science Review, 20 (1), 43-49. https://doi.org/10.2478/msr-2020-0006.10.2478/msr-2020-0006 Search in Google Scholar

[24] Sedlacek, M., Krumpholc, M. (2005). Digital measurement of phase difference - a comparative study DSP algorithms. Metrology and Measurement Systems, 12 (4), 427-448. Search in Google Scholar

[25] Wang, K., Tu, Y., Shen, Y., Xiao, W., McLernon, D. (2018). A modulation based phase difference estimator for real sinusoids to compensate for incoherent sampling. Review of Scientific Instruments, 89 (8), 085120. https://doi.org/10.1063/1.5026439.10.1063/1.502643930184650 Search in Google Scholar

[26] Shen, Y.L., Tu, Y.Q., Chen, L.J., Shen, T.A. (2015). Phase difference estimation method based on data extension and Hilbert transform. Measurement Science and Technology, 26 (9), 095003. https://doi.org/10.1088/0957-0233/26/9/095003.10.1088/0957-0233/26/9/095003 Search in Google Scholar

[27] Ignatjev, V., Stankevich, D. (2017). A fast estimation method for the phase difference between two quasiharmonic signals for real-time systems. Circuits, Systems, and Signal Processing, 36 (9), 3854-3863. https://doi.org/10.1007/s00034-016-0484-3.10.1007/s00034-016-0484-3 Search in Google Scholar

[28] Chen, N., Fan, S., Zheng, D. (2019). A phase difference measurement method based on strong tracking filter for Coriolis mass flowmeter. Review of Scientific Instruments, 90 (7), 075003. https://doi.org/10.1063/1.5086714.10.1063/1.508671431370491 Search in Google Scholar

[29] Zhang, M., Wang, H., Qin, H., Zhao, W., Liu, Y. (2018). Phase difference measurement method based on progressive phase shift. Electronics, 7 (6), 86. https://doi.org/10.3390/electronics7060086.10.3390/electronics7060086 Search in Google Scholar

[30] Choi, U.G., Kim, H.Y., Han, S.T., Yang, J.R. (2019). Measurement method of amplitude ratios and phase differences based on power detection among multiple ports. IEEE Transactions on Instrumentation and Measurement, 68 (12), 4615-4617. https://doi.org/10.1109/TIM.2019.2943976.10.1109/TIM.2019.2943976 Search in Google Scholar

[31] Gula, V., Polikarovskykh, O., Horiashchenko, K., Karpova, L.V., Melnychuk, V.M. (2019). Measurements of periodic signals phase shifts with application of direct digital synthesis. Devices and Methods of Measurements, 10 (2), 169-177. https://doi.org/10.21122/2220-9506-2019-10-2-169-177.10.21122/2220-9506-2019-10-2-169-177 Search in Google Scholar

[32] Joint Committee for Guides in Metrology. (2012). International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd edition. JCGM 200:2012. Search in Google Scholar

[33] Babak, V., Babak, S., Eremenko, V., Kuts, Y., Myslovych, M., Scherbak, L., Zaporozhets, A. (2021). Models and Measures in Measurements and Monitoring. Springer, ISBN 978-3-030-70782-8. https://doi.org/10.1007/978-3-030-70783-5.10.1007/978-3-030-70783-5 Search in Google Scholar

[34] Bendat, J., Piersol, A. (2010). Random Data. Analysis and Measurement Procedures. John Willey & Sons. ISBN 978-0-470-24877-5.10.1002/9781118032428 Search in Google Scholar

[35] Poularikas, A. (2010). Transforms and Applications Handbook. CRC Press. ISBN 9781420066524. Search in Google Scholar

[36] Mardia, K.V., Jupp, P.E. (1999). Directional Statistics. John Willey & Sons. ISBN 978-0-471-95333-3.10.1002/9780470316979 Search in Google Scholar

[37] Fisher, N. (2011). Statistical Analysis of Circular Data. Cambridge University Press. https://doi.org/10.1017/CBO9780511564345.10.1017/CBO9780511564345 Search in Google Scholar

[38] Marple, L. (1999). Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47 (9), 2600-2603. https://doi.org/10.1109/78.782222.10.1109/78.782222 Search in Google Scholar

[39] Kuts, Y., Protasov, A., Lysenko, I., Dugin, O., Bliznuk, O., Uchanin, V. (2017). Using multidifferential transducer for pulsed eddy current object inspection. In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 826-829. https://doi.org/10.1109/UKRCON.2017.8100361.10.1109/UKRCON.2017.8100361 Search in Google Scholar

[40] Lysenko, I., Protasov, A., Kuts, Y., Dugin, O. (2017). Pulsed eddy current non-destructive testing. Scientific Proceedings of STUME, 1 (216), 114-117. Search in Google Scholar

[41] Kuts, Y., Protasov, A., Lysenko, I., Dugin, O. (2014). Pulsed eddy current non-destructive testing of the coating thickness. In 11th European Conference on Non-Destructive Testing (ECNDT 2014). Brno, Czech Republic: Brno University of Technology, ISBN 978-80-214-5018-9, 1-8. Search in Google Scholar

[42] Uchanin, V.M. (2013). Overhead Eddy Current Converters of Double Differentiation. Lviv, Ukraine: SPLOM. Search in Google Scholar

[43] Lysenko, I., Kuts, Y., Eremenko, V., Protasov, A., Uchanin, V. (2020). Advanced signal processing methods for inspection of aircraft structural materials. Transactions on Aerospace Research, 2 (259), 27-35. http://dx.doi.org/10.2478/tar-2020-0008.10.2478/tar-2020-0008 Search in Google Scholar

[44] Kuts, Y., Monchenko, O., Bystra, I., et al. (2019). Phase method of ultrasonic pulse-echo thickness measurement of products made of structural materials. Interservise, Kyiv, Ukraine. (in Ukrainian) Search in Google Scholar

[45] Macek, W., Marciniak, Z., Branco, R., Rozumek, D., Królczyk, G.M. (2021). A fractographic study exploring the fracture surface topography of S355J2 steel after pseudo-random bending-torsion fatigue tests. Measurement, 178, 109443. https://doi.org/10.1016/j.measurement.2021.109443.10.1016/j.measurement.2021.109443 Search in Google Scholar

[46] Maruda, R.W., Krolczyk, G.M., Wojciechowski, S., Powalka, B., Klos, S., Szczotkarz, N., Matuszak, M., Khanna, N. (2020). Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. Tribology International, 148, 106334. https://doi.org/10.1016/j.triboint.2020.106334.10.1016/j.triboint.2020.106334 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo