1. bookVolume 20 (2020): Issue 5 (October 2020)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Sensitivity Analysis of the Simply Noise-matched Receiving Coil for NMR Experiments

Published Online: 29 Oct 2020
Volume & Issue: Volume 20 (2020) - Issue 5 (October 2020)
Page range: 236 - 240
Received: 20 May 2020
Accepted: 05 Oct 2020
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The article analyzes the sensitivity of unmatched receiving coil for the NMR scanner. Receiver of the scanner was investigated from the point of view of noise features. Theory of the noise figure has been modified to utilize the receiver for digitization of its own noise and the noise figure calculation. The resulting noise figure has been measured with different source impedances and the optimal value has been acquired. Influence of the noise figure on the resulting signal-to-noise ratio has been calculated for the sensitivity judgement. The output SNR has been investigated for constant input SNR as well as for constant input voltage. Many results are depicted in figures. Also examples of theoretical results are depicted graphically.

Keywords

[1] Žalud, V., Kulešov, V.N. (1980). Polovodičové obvody s malým šumem (Semiconductor Circuits with Low Noise). Prague, Czech Republic: SNTL. (in Czech)Search in Google Scholar

[2] Schiek, B., Siweris, H.J. (1990). Rauschen in Hochfrequenz-schaltungen (Noises in RF Circuits). Heidelberg, Germany: Hüthig. (in German)Search in Google Scholar

[3] Andris, P., Emery, E.F., Frollo, I. (2019). Analysis of NMR spectrometer receiver noise figure. Mathematical Problems in Engineering, 2019, 1083706. https://doi.org/10.1155/2019/1083706.10.1155/2019/1083706Search in Google Scholar

[4] Andris, P., Dermek, T., Frollo, I. (2019). Noise matching of the NMR scanner receiver. In MEASUREMENT 2019: 12th International Conference on Measurement. Bratislava, Slovakia: Institute of Measurement Science, Slovak Academy of Sciences, 274-277. https://doi.org/10.23919/MEASUREMENT47340.2019.8779891.10.23919/MEASUREMENT47340.2019.8779891Search in Google Scholar

[5] Hoult, D.I., Richards, R.E. (1976). The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance 24 (1), 71-85. https://doi.org/10.1016/0022-2364(76)90233-X.10.1016/0022-2364(76)90233-XSearch in Google Scholar

[6] Hoult, D.I., Lauterbur, P.C. (1979). The sensitivity of the zeugmatographic experiment involving human samples. Journal of Magnetic Resonance, 34 (2), 425-433. https://doi.org/10.1016/0022-2364(79)90019-2.10.1016/0022-2364(79)90019-2Search in Google Scholar

[7] Raad, A., Darrasse, L. (1992). Optimization of NMR bandwidth by inductive coupling. Magnetic Resonance Imaging, 10 (1), 55-65. https://doi.org/10.1016/0730-725x(92)90373-8.10.1016/0730-725X(92)90373-8Search in Google Scholar

[8] Décorps, M., Blondet, P., Reutenauer, H., Albrand, J.P., Remy, C. (1985). An inductively coupled, series-tuned NMR probe. Journal of Magnetic Resonance, 65 (1), 100-109. https://doi.org/10.1016/0022-2364(85)90378-6.10.1016/0022-2364(85)90378-6Search in Google Scholar

[9] Andris, P. (2001) Matching and tuning RF coils for NMR tomograph. Measurement Science Review, 1 (1), 115-118.Search in Google Scholar

[10] Andris, P., Frollo, I. (2003). Matching of RF coils for NMR measurements using inductors. Measurement Science Review, 3 (3), 57-60.Search in Google Scholar

[11] Vergara Gomez, T.S., Dubois, M., Glybovski, S., Larrat, B., de Rosny, J., Rockstuhl, C., Bernard, M., Abdeddaim, R., Enoch, S., Kober, F. (2019). Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging. NMR in Biomedicine, 32 (5), e4079. https://doi.org/10.1002/nbm.4079.10.1002/nbm.4079659436030773725Search in Google Scholar

[12] Qian, Ch., Duan, Q., Dodd, S., Koretsky, A., Murphy-Boesch, J. (2016). Sensitivity enhancement of an inductively coupled local detector using a HEMT-based current amplifier. Magnetic Resonance in Medicine, 75 (6), 2573-2578. https://doi.org/10.1002/mrm.25850.10.1002/mrm.25850472059126192998Search in Google Scholar

[13] Weis, J., Ericsson, A., Hemmingsson, A. (1999). Chemical shift artifact-free microscopy: Spectroscopic microimaging of the human skin. Magnetic Resonance in Medicine, 41 (5), 904-908. https://doi.org/10.1002/(SICI)1522-2594(199905)41:5%3C904::AID-MRM8%3E3.0.CO;2-4.Search in Google Scholar

[14] Marcon, P., Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2012). Diffusion MRI: Mitigation of magnetic field inhomogeneities. Measurement Science Review, 12 (5), 205-212. https://doi.org/10.2478/v10048-012-0031-8.10.2478/v10048-012-0031-8Search in Google Scholar

[15] Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2007). Mapping of magnetic field around small coil using the magnetic resonance method. Measurement Science and Technology, 18 (7), 2223-2230. https://doi.org/10.1088/0957-0233/18/7/056.10.1088/0957-0233/18/7/056Search in Google Scholar

[16] Nespor, D., Bartusek, K., Dokoupil, Z. (2014). Comparing saddle, slotted-tube and parallel-plate coils for Magnetic Resonance Imaging. Measurement Science Review, 14 (3), 171-176. https://doi.org/10.2478/msr-2014-0023.10.2478/msr-2014-0023Search in Google Scholar

[17] Latta, P., Gruwel, M.L., Volotovskyy, V., Weber, M.H., Tomanek, B. (2007). Simple phase method for measurement of magnetic field gradient waveforms. Magnetic Resonance Imaging, 25 (9), 1272-1276. https://doi.org/10.1016/j.mri.2007.02.002.10.1016/j.mri.2007.02.00217418520Search in Google Scholar

[18] Latta, P., Gruwel, M.L., Volotovskyy, V., Weber, M.H., Tomanek, B. (2008). Single-point imaging with a variable phase encoding interval. Magnetic Resonance Imaging, 26 (1), 109-116. https://doi.org/10.1016/j.mri.2007.05.004.10.1016/j.mri.2007.05.00417614232Search in Google Scholar

[19] Gupta, M., Safvan, C.P., Singh, K., Lobiyal, D.K. (2018). Modeling and simulation of on-chip probe for portable NMR applications. In Progress in Electromagnetics Research Symposium (PIERS-Toyama). IEEE, 1918-1924. https://doi.org/10.23919/PIERS.2018.8597770.10.23919/PIERS.2018.8597770Search in Google Scholar

[20] Wimmer, G., Witkovský, V., Duby, T. (2000). Proper rounding of the measurement results under normality assumptions. Measurement Science and Technology, 11 (12), 1659-1665. https://doi.org/10.1088/0957-0233/11/12/302.10.1088/0957-0233/11/12/302Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo