1. bookVolume 20 (2020): Issue 1 (February 2020)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Automatic Strain Gauge Balance Design Optimization Approach and Implementation Based on Integration of Software

Published Online: 24 Feb 2020
Volume & Issue: Volume 20 (2020) - Issue 1 (February 2020)
Page range: 22 - 34
Received: 14 Jul 2019
Accepted: 20 Jan 2020
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The traditional wind tunnel strain balance design cycle is a manual iterative process. With the experience and intuition of the designer, one solution that meets the design requirements can be selected among a small number of design solutions. This paper introduces a novel software integration-based automatic balance design optimization system (ABDOS) and its implementation by integrating professional design knowledge and experience, stepwise optimization strategy, CAD-CAE software, self-developed scripts and tools. The proposed two-step optimization strategy includes the analytical design process (ADP) and the finite element method design process (FEDP). The built-in optimization algorithm drives the design variables change and searches for the optimal structure combination meeting the design objectives. The client-server based network architecture enables local lightweight design input, task management, and result output. The high-performance server combines all design resources to perform all the solution calculations. The development of more than 10 balances that have been completed and a case study show that this method and platform significantly reduce the time for design evaluation and design-analysis-redesign cycles, assisting designers to comprehensively evaluate and improve the performance of the balance.

Keywords

[1] Tropea, C., Yarin, A.L., Foss, J.F. (2007). Springer Handbook of Experimental Fluid Mechanics. Springer, doi: 10.1007/978-3-540-30299-5.10.1007/978-3-540-30299-5Search in Google Scholar

[2] Chanetz, B. (2017). A century of wind tunnels since Eiffel. Comptes Rendus Mécanique, 345 (8), 581-594. doi:10.1016/j.crme.2017.05.012.10.1016/j.crme.2017.05.012Search in Google Scholar

[3] Gebbink, R., Wang, G., Zhong, M. (2018). High-speed wind tunnel test of the CAE aerodynamic validation model. Chinese Journal of Aeronautics, 31, 439-447. doi: 10.1016/j.cja.2018.01.010.10.1016/j.cja.2018.01.010Search in Google Scholar

[4] Giappino, S., Melzi, S., Tomasini, G. (2018). High-speed freight trains for intermodal transportation: Wind tunnel study on the aerodynamic coefficients of container wagons. Journal of Wind Engineering and Industrial Aerodynamics, 175, 111-119. doi: 10.1016/j.jweia.2018.01.047.10.1016/j.jweia.2018.01.047Search in Google Scholar

[5] Sheng, R., Perret, L., Calmet, I., Demouge, F., Guilhot, J. (2018). Wind tunnel study of wind effects on a high-rise building at a scale of 1:300. Journal of Wind Engineering and Industrial Aerodynamics, 174, 391-403. doi:10.1016/j.jweia.2018.01.017.10.1016/j.jweia.2018.01.017Search in Google Scholar

[6] Gorlin, S.M., Slezinger, I.I. (1964). Wind Tunnels and Their Instrumentation. IPST, 599.Search in Google Scholar

[7] Damljanović, D., Isaković, J., Rašuo, B. (2013). T-38 wind-tunnel data quality assurance based on testing of a standard model. Journal of Aircraft, 50 (4), 1141-1149. doi: 10.2514/1.c032081.10.2514/1.C032081Search in Google Scholar

[8] Vidanović, N.D., Rašuo, B.P., Damljanović, D.B., Vuković, D.S., Ćurčić, D.S. (2014). Validation of the CFD code used for determination of aerodynamic characteristics of nonstandard AGARD-B calibration model. Thermal Science, 2014, 18 (4), 1223-1233. doi:10.2298/TSCI130409104V.10.2298/TSCI130409104VSearch in Google Scholar

[9] Ocokoljić, G., Damljanović, D., Vuković, Đ., Rašuo, B.P. (2018). Contemporary frame of measurement and assessment of wind-tunnel flow quality in a low-speed facility. FME Transactions, 46 (4), 429-442. doi: 10.5937/fmet1804429O.10.5937/fmet1804429OSearch in Google Scholar

[10] Ewald, B.F.R. (2000). Multi-component force balances for conventional and cryogenic wind tunnels. Measurement Science and Technology, 11 (6). doi: 10.1088/0957-0233/11/6/201.10.1088/0957-0233/11/6/201Search in Google Scholar

[11] Parker, P.A. (2001). Cryogenic balance technology at the National Transonic Facility. In 39th AIAA Aerospace Sciences Meeting & Exhibit. AIAA-2001-0758.10.2514/6.2001-758Search in Google Scholar

[12] Burns, D.E., Williams, Q.L., Phillips, B.D., Commo, S.A. (2016). Review of potential wind tunnel balance technologies. In 10th International Symposium on Strain-Gauge Balances.Search in Google Scholar

[13] Hou, J.W., Twu, S.L. (1987). Optimum design of internal strain-gage balances: An example of three-dimensional shape optimization. Journal of Mechanical Design, 109 (2), 257-262. doi:10.1115/1.3267448.10.1115/1.3267448Search in Google Scholar

[14] Lindell, M.C., Center, L.R. (1996). Finite element analysis of a NASA National Transonic Facility wind tunnel balance. In International Symposium on Strain-Gauge Balances.Search in Google Scholar

[15] Zhai, J., Ewald, B., Hufnagel, K. (1995). Investigation on the interference of internal six-component wind tunnel balances with FEM. In ICIASF ‘95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities. IEEE.10.1109/ICIASF.1995.519122Search in Google Scholar

[16] Parker, P.A., DeLoach, R. (2002). Structural optimization of a force balance using a computational experiment design. In 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-0540.10.2514/6.2002-540Search in Google Scholar

[17] Rhew, R.D. (2005). Strain-Gage balance axial section design optimization using design of experiments. In U.S. Air Force T&E Days, AIAA 2005-7600. doi: 10.2514/6.2005-7600.10.2514/6.2005-7600Search in Google Scholar

[18] Sun, Y., Liu, Y., Zou, T., Jin, M., Liu, H. (2015). Design and optimization of a novel six-axis force/torque sensor for space robot. Measurement, 65, 135-148. doi: 10.1016/j.measurement.2015.01.005.10.1016/j.measurement.2015.01.005Search in Google Scholar

[19] Vadassery, P., Joshi, D.D., Rolim, T.C., Lu, F.K. (2013). Design and testing of an external drag balance for a hypersonic shock tunnel. Measurement, 46, 2110–2117. doi: 10.1016/j.measurement.2013.03.011.10.1016/j.measurement.2013.03.011Search in Google Scholar

[20] Nouri, N.M., Mostafapour, K., Kamran, M., Bohadori, R. (2014). Design methodology of a six-component balance for measuring forces and moments in water tunnel tests. Measurement, 58, 544-555. doi: 10.1016/j.measurement.2014.09.011.10.1016/j.measurement.2014.09.011Search in Google Scholar

[21] Lynn, K.C. (2015). Flexural fillet geometry optimization for design of force transducers used in aerodynamic testing. In 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1789. doi: 10.2514/6.2015-1789.10.2514/6.2015-1789Search in Google Scholar

[22] Tavakolpour-Saleh, A.R., Setoodeh, A.R., Gholamzadeh, M. (2016). A novel multi-component strain-gauge external balance for wind tunnel tests: Simulation and experiment. Sensors and Actuators, A: Physical, 247, 172-186. doi:10.1016/j.sna.2016.05.035.10.1016/j.sna.2016.05.035Search in Google Scholar

[23] Kolhapure, R., Shinde, V., Kamble, V. (2017). Geometrical optimization of strain gauge force transducer using GRA method. Measurement, 101, 111-117. doi: 10.1016/j.measurement.2017.01.030.10.1016/j.measurement.2017.01.030Search in Google Scholar

[24] Akbari, H., Kazerooni, A. (2018). Improving the coupling errors of a Maltese cross-beams type six-axis force/moment sensor using numerical shape-optimization technique. Measurement, 126, 342-355. doi: 10.1016/j.measurement.2018.05.074.10.1016/j.measurement.2018.05.074Search in Google Scholar

[25] Park, H.S., Dang, X.P. (2010). Structural optimization based on CADCAE integration and metamodeling techniques. Computer-Aided Design, 42 (10), 889-902. doi: 10.1016/j.cad.2010.06.003.10.1016/j.cad.2010.06.003Search in Google Scholar

[26] Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. Computer-Aided Design, 45 (2), 204-228. doi: 10.1016/j.cad. 2012.08.006.Search in Google Scholar

[27] Dang, X.P. (2014). General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory, 41, 15-27. doi: 10.1016/j.simpat.2013.11.003.10.1016/j.simpat.2013.11.003Search in Google Scholar

[28] Vidanović, N., Rašuo, B., Kastratović, G., Maksimović, S., Ćurčić, D., Samardžić, M. (2017). Aerodynamic–structural missile fin optimization. Aerospace Science and Technology, 65, 26-45. doi: 10.1016/j.ast.2017.02. 010.Search in Google Scholar

[29] Dassault Systèmes SIMULIA. (2012). Isight 5.7. User’s Guide.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo