Cite

[1] Seiyama, T., Kato, A., Fujiishi, K., Nagatani, M. (1962). A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 34, 1502-1503.10.1021/ac60191a001Search in Google Scholar

[2] Basu, S., Bhattacharyya, P. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B, 173, 1-21.10.1016/j.snb.2012.07.092Search in Google Scholar

[3] Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B, 179, 32-45.10.1016/j.snb.2012.11.014Search in Google Scholar

[4] Varghese, S. S., Lonkar, S., Singh K. K., Swaminathan, S., Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B, 218, 160-183.10.1016/j.snb.2015.04.062Search in Google Scholar

[5] Wang, T., Huang, D., Yang Z. et al. (2016). A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Letters, 8 (2), 95-119.10.1007/s40820-015-0073-1622368230460270Search in Google Scholar

[6] Yang, S., Jiang, C., Wei, S.-H. (2017). Gas sensing in 2D materials. Applied Physics Reviews, 4, 021304.10.1063/1.4983310Search in Google Scholar

[7] Huo, N., Yang, S., Wei, Z. et al. (2014). Photoresponsive and gas sensing FET based on multilayer WS2 flakes. Scientific Reports, 4, 5209-5221.10.1038/srep05209404888624909387Search in Google Scholar

[8] Li, H., Wu, J., Yin, Z., Zhang, H. (2014). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of Chemical Research, 47, 1067-1075.10.1021/ar400231224697842Search in Google Scholar

[9] Cagliani, A., Mackenzie, D., Tschammer, L.K., Pizzocchero, F., Almdal, K., Bøggild, P. (2014). Large- area nanopatterned graphene for ultrasensitive gas sensing. Nano Research, 7 (5), 743-754.10.1007/s12274-014-0435-xSearch in Google Scholar

[10] Chung, M.G., Kim, D.-H., Seo, D.K. et al. (2012). Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors and Actuators B, 169, 387-392.10.1016/j.snb.2012.05.031Search in Google Scholar

[11] Chu, B.H., Lo, C.F., Nicolosi, J. et al. (2011). Hydrogen detection using platinum coated graphene grown on SiC. Sensors and Actuators B, 157, 500-503.10.1016/j.snb.2011.05.007Search in Google Scholar

[12] Cho, B., Yoon, J., Hahm, M.G. et al. (2014). Graphene- based gas sensor: Metal decoration effect and application to a flexible devices. Journal of Materials Chemistry C, 2, 5280-5285.10.1039/C4TC00510DSearch in Google Scholar

[13] Chung, M.G., Kim, D.H., Lee, H.M. et al. (2012). Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B, 166-167, 172-176.10.1016/j.snb.2012.02.036Search in Google Scholar

[14] Schedin, F., Geim, A.K., Morozov, S.V. et al. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6 (9), 652-655.10.1038/nmat196717660825Search in Google Scholar

[15] Hernandez, Y., Nicolosi, V., Lotya, M. et al. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568.10.1038/nnano.2008.21518772919Search in Google Scholar

[16] Nemade, K.R., Waghuley, S.A. (2013). Chemiresistive gas sensing by few-layered graphene. Journal of Electronic Materials, 42, 2857-2866.10.1007/s11664-013-2699-4Search in Google Scholar

[17] Kim, H.K., Mattevi, C., Kim, H.J. et al. (2013). Optoelectronic properties of graphene thin films deposited by Langmuir-Blodgett assembly. Nanoscale, 5, 12365-12374.10.1039/c3nr02907g24162721Search in Google Scholar

[18] Ko, G., Kim, H.-Y., Ahn, J., Park, Y.M., Lee, K.-Y., Kim, J. (2010). Graphene based nitrogen dioxide gas sensors. Current Applied Physics, 10, 1002-1004.10.1016/j.cap.2009.12.024Search in Google Scholar

[19] Kostiuk, D., Luby, S., Demydenko, M. et al. (2016). Few-layer graphene Langmuir-Schaefer nanofilms for H2 gas sensing. Procedia Engineering, 168, 243-246.10.1016/j.proeng.2016.11.172Search in Google Scholar

[20] Capone, S., Benkovicova, M., Forleo, A. et al. (2017). Palladium/γ-Fe2O3 nanoparticle mixtures for acetone and NO2 gas sensors. Sensors and Actuators B, 243, 895-903.10.1016/j.snb.2016.12.027Search in Google Scholar

[21] Jia, W., Tchoudakov, R., Narkis, M., Siegmann, A. (2005). Performance of expanded graphite and expanded milled graphite fillers in thermosetting resins. Polymer Composites, 26 (4), 526-533.10.1002/pc.20123Search in Google Scholar

[22] Chitu, L., Siffalovic, P., Majkova, E., Jergel, M., Luby, S. (2014). Method of the preparation of nanoparticle monolayers and multilayers. Slovak patent No. 288234. Bratislava: The Industrial Property Office of SR. (in Slovak)Search in Google Scholar

[23] Hoffmann, R. (2013). Small but strong lessons from chemistry for nanoscience. Angewandte Chemie, 52, 93-103.10.1002/anie.201206678Search in Google Scholar

[24] Hall, P.M. (1997). Resistance calculations for thin film rectangles. Thin Solid Films, 300, 256-264.10.1016/S0040-6090(96)09495-3Search in Google Scholar

[25] Afzal, A., Cioffi, N., Sabbatini, L., Torsi, L. (2012). NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators B, 171-172, 25-42.10.1016/j.snb.2012.05.026Search in Google Scholar

[26] Pearce, R., Iakimov, T., Andersson, M., Hultman, L., Lloyd Spetz, A., Yakimova, R. (2011). Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sensors and Actuators B, 155, 451-455.10.1016/j.snb.2010.12.046Search in Google Scholar

[27] Phan, D.-T., Chung, G.-S. (2014). A novel Pd nanocube-graphene hydride for hydrogen detection. Sensors and Actuators B, 199, 354-360.10.1016/j.snb.2014.04.013Search in Google Scholar

[28] Yi, J., Kim, S.H., Lee, W.W. et al. (2015). Graphene meshes decorated with paladium nanoparticles for hydrogen detection. Journal of Physics D: Applied Physics, 48, 475103.10.1088/0022-3727/48/47/475103Search in Google Scholar

[29] Ménini, P., Parret, F., Guerrero, M. et al. (2004). CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum. Sensors and Actuators B, 103, 111-114.10.1016/j.snb.2004.04.103Search in Google Scholar

[30] Biswal, R.C. (2011). Pure and Pt-loaded γ-iron oxide as sensor for detection of sub ppm level of acetone. Sensors and Actuators B, 157, 183-188.10.1016/j.snb.2011.03.047Search in Google Scholar

[31] Wetchakun, K., Samerjai, T., Tamaekong, N. et al. (2011). Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B, 160, 580-591.10.1016/j.snb.2011.08.032Search in Google Scholar

[32] Dai, J.-F., Wang, G.-J., Ma, L., Wu, C.-K. (2015). Surface properties of graphene: Relationship to graphene-polymer composites. Reviews on Advanced Materials Science, 40, 60-71.Search in Google Scholar

[33] Lian, P., Zhu, X., Liang, S. et al. (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 55, 3909-3914.10.1016/j.electacta.2010.02.025Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing