Open Access

Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST


[1] Gillingham, P.R. (1989). Lessons for new large telescopes from the AAT. Astrophysics and Space Science, 160 (1), 281-286.10.1007/BF00642783Search in Google Scholar

[2] Kent, S.M. (1994). Sloan digital sky survey. Astrophysics and Space Science, 217 (1), 27-30.10.1007/BF00990018Search in Google Scholar

[3] Xing, X.Z., Zhai, C., Du, H.S., Li, W.M., Hu, H.Z., Wang, R.F., Shi, D.X. (1998). Parallel controllable optical fiber positioning system for LAMOST. In Advanced Technology Optical / IR Telescopes VI, Proc. SPIE 3352, 839-849.Search in Google Scholar

[4] Edelstein, J., Poppett, C., Sirk, M., Besuner, R., Lafever, R., Allington-Smith, J.R., Murray, G.J. (2012). Optical fiber systems for the BigBOSS instrument. In Modern Technologies in Space-and Ground-Based Telescopes and Instrumentation II, Proc. SPIE 8450.10.1117/12.925196Search in Google Scholar

[5] Predmore, C.R. (2010). Bundle adjustment of multiposition measurements using the Mahalanobis distance. Precision Engineering, 34 (1), 113-123.10.1016/j.precisioneng.2009.05.003Search in Google Scholar

[6] Zhang, F.M., Qu, X.H. (2012). Fusion estimation of point sets from multiple stations of spherical coordinate instruments utilizing uncertainty estimation based on monte carlo. Measurement Science Review, 12 (2), 40-45.10.2478/v10048-012-0009-6Search in Google Scholar

[7] D’Amato, R., Caja, J., Maresca, P., Gómez, E. (2014). Use of coordinate measuring machine to measure angles by geometric characterization of perpendicular planes. Estimating uncertainty. Measurement, 47, 598-606.10.1016/j.measurement.2013.09.027Search in Google Scholar

[8] Shi, Y.Q., Sun, C.K., Wang, P., Wang, Z., Duan, H.X. (2011). High-speed measurement algorithm for the position of holes in a large plane. Optics and Lasers in Engineering, 50 (12), 1828-1835.Search in Google Scholar

[9] Feng, M.C., Jin, Y., Zhai, C. (2011). Embedded realtime strain measurement system based on improved automated grid method. Chinese Journal of Scientific Instrument, 32 (12), 2874-2880.Search in Google Scholar

[10] Janusek, D., Kania, M., Zaczek, R., Zavala-Fernandez, H., Zbiec, A., Opolski, G., Maniewski, R. (2011). Application of wavelet based denoising for T-wave alternans analysis in high resolution ECG maps. Measurement Science Review, 11 (6), 181-184.10.2478/v10048-011-0036-8Search in Google Scholar

[11] Liu, Z.G., Zhai, C., Hu, H.Z., Wang, J.P., Chu, J.R. (2011). Research on calibration method of LAMOST fiber robot. In Astronomical Adaptive Optics Systems and Applications IV, Proc. SPIE 8149.10.1117/12.892989Search in Google Scholar

[12] Wang, M.X., Zhao, Y.H., Luo, A. (2012). LAMOST fiber unit positional precision passive detection exploiting the technique of template matching. In Modern Technologies in Space- and Ground-Based : Telescopes and Instrumentation II, Proc. SPIE 8450.Search in Google Scholar

[13] Barone, S., Paoli, A., Razionale, A.V. (2013). Multiple alignments of range maps by active stereo imaging and global marker framing. Optics and Lasers in Engineering, 51 (2), 116-127.10.1016/j.optlaseng.2012.09.003Search in Google Scholar

[14] Guidi, G., Beraldin, J.A., Ciofi, S., Atzeni, C. (2003). Fusion of range camera and photogrammetry: A systematic procedure for improving 3-D models metric accuracy. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33 (4), 667-676.10.1109/TSMCB.2003.81428218238216Search in Google Scholar

[15] Tao, C.V., Hu, Y. (2001). A comprehensive study of the rational function model for photogrammetric processing. Photogrammetric Engineering & Remote Sensing, 67 (12), 1347-1357.Search in Google Scholar

[16] Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A. (2000). Bundle adjustment-a modern synthesis. Vision Algorithms: Theory Practice, 1883, 298-372.10.1007/3-540-44480-7_21Search in Google Scholar

[17] Lourakis, M.I.A., Argyros, A.A. (2009). SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software, 36 (1), 1-30.10.1145/1486525.1486527Search in Google Scholar

[18] Luhmann, T. (2010). Close range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (6), 558-569.10.1016/j.isprsjprs.2010.06.003Search in Google Scholar

[19] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P. (2009). Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing, 27 (8), 1178-1193.10.1016/j.imavis.2008.11.006Search in Google Scholar

[20] Agarwal, S., Snavely, N., Seitz, S., Szeliski, R. (2010). Bundle adjustment in the large. In Computer Vision - ECCV 2010, LNCS 6312, 29-42.10.1007/978-3-642-15552-9_3Search in Google Scholar

[21] Ji, Z., Boutin, M., Aliaga, D.G. (2006). Robust bundle adjustment for structure from motion. In IEEE International Conference on Image Processing. IEEE, 2185-2188.Search in Google Scholar

[22] Marquardt, D. (1963). An algorithm for the leastsquares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics, 11 (2), 431-441.10.1137/0111030Search in Google Scholar

[23] Zhang, Y.Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (11), 1330-1334.10.1109/34.888718Search in Google Scholar

[24] Tsai, M.J., Hung, C.C. (2005). Development of a highprecision surface metrology system using structured light projection. Measurement, 38 (3), 236-247.Search in Google Scholar

[25] Tsai, R.Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 3 (4), 323-344.10.1109/JRA.1987.1087109Search in Google Scholar

[26] Huang, J.J., Wang, Z., Gao, Z.H., Gao, J.M. (2011). A novel color coding method for structured light 3D measurement. In Videometrics, Range Imaging, and Applications XI, Proc. SPIE 8085.10.1117/12.889317Search in Google Scholar

[27] Weng, J., Cohen, P., Henriou, M. (1992). Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (10), 965-980.10.1109/34.159901Search in Google Scholar

[28] Hartley, R.I. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (6), 580-593.10.1109/34.601246Search in Google Scholar

[29] Menudet, J.F., Becker, J.M., Fournel, T., Mennessier, C. (2008). Plane-based camera self-calibration by metric rectification of images. Image and Vision Computing, 26 (7), 913-934.10.1016/j.imavis.2007.10.005Search in Google Scholar

[30] Debei, S., Aboudan, A., Colombatti, G., Pertile, M. (2012). Lutetia surface reconstruction and uncertainty analysis. Planetary and Space Science, 71 (1), 64-72.10.1016/j.pss.2012.07.013Search in Google Scholar

[31] Feng, M.C., Gu, Y.G., Zhai, C. (2013). Precise measurement of fibers position using bundle adjustment algorithm. In IEEE International Instrumentation and Measurement Technology Conference. IEEE, 576-580. 10.1109/I2MTC.2013.6555482Search in Google Scholar

Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing