Cite

[1] Appendix 4 to the Ordinance of the Minister of Energy of 23 November 2016 concerning the detailed requirements regarding the conduction of underground mining plant operations. Dz. U. 2017, item 1118. Search in Google Scholar

[2] A. Carbogno, M. Żołnierz, S. Mateja S.: Liny o powierzchniowym styku drutów stosowane w górniczych urządzeniach transportowych. Bezpieczeństwo Pracy Urządzeń Transportowych w Górnictwie. Monografia CBiDGP Sp. z o.o., Lędziny 2011. Search in Google Scholar

[3] J. Hankus: Liny wyciągowe nośne o powierzchniowym styku drutów. GIG, Katowice 2003. Search in Google Scholar

[4] B. Kubiś: Wpływ wstępnej deformacji splotek w linach kompaktowanych na ich trwałość i parametry wytrzymałościowe (Effect of preliminary deformation of strands in compacted ropes on their durability and strength parameters). GIG, Katowice 2019, Praca doktorska w maszynopisie niepublikowana. (typescript in Polish with an abstract in English) Search in Google Scholar

[5] A. Tytko: Liny stalowe. PWN, Warszawa 2021. Search in Google Scholar

[6] M. Kamarudin, M.J. Jamaluddin, M.N. Tamin: Fatigue assessment of steel wire rope. AIP Conference Proceedings 2068, 2019; https://doi.org/10.1063/1.5089408.10.1063/1.5089408 Search in Google Scholar

[7] P. Peterka, J. Krešák, et al.: Failure analysis of hoisting steel wire rope. Engineering Failure Analysis; 45(1), pp. 96-105, 2014, https://doi.org/10.1016/j.engfailanal.2014.06.005.10.1016/j.engfailanal.2014.06.005 Search in Google Scholar

[8] D. Zhang, C. Feng, K. Chen, et al.: Effect of Broken Wire on Bending Fatigue Characteristics of Wire Ropes. International Journal of Fatigue; 103, pp. 456-465, 2017, https://doi.org/10.1016/j.ijfatigue.2017.06.024.10.1016/j.ijfatigue.2017.06.024 Search in Google Scholar

[9] T. Huang, T. Xiahou, Y.F. Li, et al.: Assessment of wind turbine generators by fuzzy universal generating function. Eksploatacja i Niezawodnosc – Maintenance and Reliability; 23(2), pp. 308-314, 2021, https://doi.org/10.17531/ein.2021.2.10.10.17531/ein.2021.2.10 Search in Google Scholar

[10] Y.F. Li, H.Z. Huang, J. Mi, et al.: Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability. Annals of Operations Research, 311, pp. 2022; https://doi.org/10.1007/s10479-019-03247-6.10.1007/s10479-019-03247-6 Search in Google Scholar

[11] Y.F. Li, Y. Liu, T. Huang, et al.: Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model. Quality and Reliability Engineering International, 36 (7), pp. 2509-2520, 2020, https://doi.org/10.1002/qre.2713.10.1002/qre.2713 Search in Google Scholar

[12] J. Mi, Y.F. Li, W. Peng, et al.: Reliability analysis of complex multi-state system with common cause failure based on evidential networks. Reliability Engineering & System Safety; 174: pp. 195-209, 71-81, 2018, https://doi.org/10.1016/j.ress.2018.02.021.10.1016/j.ress.2018.02.021 Search in Google Scholar

[13] G. Olszyna. A. Tytko. A tool for determining the number of bends and places of accumulation of potential wear of steel ropes operating in the luffing systems of basic opencast mining machines, Min. Mach. 2022, vol. 40 issue 4, pp. 229-237. DOI: 10.32056/KOMAG2022.4.5 Search in Google Scholar

[14] U. Breim: Torque cycle fatigue of wire ropes. OIPEEC Conference, September 2007, How to get the most out of your ropes. pp. 99-106, Johannesburg, 2007. Search in Google Scholar

[15] J.M. Teissier, I.M.L. Ridge, J.J. Evans, M. Fournier: The effect of wire break distribution on the breaking strength of a wire rope OIPEEC Conference, April 2017, Rope – Present and Futere. pp. 267-293, La Rochelle 2017 Search in Google Scholar

[16] T. Weber, K.H. Wehking: Bending fatigue of wire ropes under torsion. OIPEEC Conference, March 2015, Challenging rope applications. pp. 251-268, Stuttgart 2015 Search in Google Scholar

[17] M. Mahmud, S. Abdullah S.M. Yunoh, A. Ariffin, Z. Nopiah: Damaging fatigue cycles determination for random service loadings using mixed Weibull analysis. International Journal of Automotive and Mechanical Engineering. Volume 13, Issue 3 pp. 3628-3641, December 2016. https://doi.org/10.15282/ijame.13.3.2016.8.029810.15282/ijame.13.3.2016.8.0298 Search in Google Scholar

[18] M. Kamal, M.M. Rahman: Fatigue life estimation models: a state of the art. International Journal of Automotive and Mechanical Engineering. Volume 9, pp. 1599-1608, January-June 2014 http://dx.doi.org/10.15282/ijame.9.2014.10.0132 Search in Google Scholar

[19] J. Winkler, C.T. Georgakis, G Fischer: Fretting fatigue behavior of high-strength steel mono strands under bending load. International Journal of Fatigue. Volume 13, pp. 13-23, 2015 http://dx.doi.org/10.1016/j.ijfatigue.2014.08.009.10.1016/j.ijfatigue.2014.08.009 Search in Google Scholar

[20] S. Mohamed, S. Abdullah, A. Arifin, A.K. Ariffin, M.M. Padzi: Characterization of the biaxial fatigue behaviour on medium carbon steel using the strain-life approach. International Journal of Automotive and Mechanical Engineering. Volume 13, pp. 3262-3277, 2016. https://doi.org/10.15282/ijame.13.1.2016.12.0272.10.15282/ijame.13.1.2016.12.0272 Search in Google Scholar

[21] M. Kamal, M.M Rahman: Finite element-based fatigue behaviour of springs in automobile suspension. International Journal of Automotive and Mechanical Engineering. Volume 10, pp. 1910-1919, July- December 2014 http://dx.doi.org/10.15282/ijame.10.2014.8.015910.15282/ijame.10.2014.8.0159 Search in Google Scholar

[22] M. Kamal, M.M. Rahman, M.S.M. Sani: Application of multi-body simulation for fatigue life estimation. International Journal of Automotive and Mechanical Engineering. Volume 7, pp. 912-923, January-June 2013. http://dx.doi.org/10.15282/ijame.7.2012.9.007410.15282/ijame.7.2012.9.0074 Search in Google Scholar

[23] S. Salleh, M.A. Abdullah, M.F. Abdulhamid M.N. Tamin: Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions. Journal of Mechanical Engineering and Sciences. Volume 11, Issue 1, pp. 2488-2502, March 2017. https://doi.org/10.15282/jmes.11.1.2017.8.022910.15282/jmes.11.1.2017.8.0229 Search in Google Scholar

[24] L. Lombardi, F. Clerici: An innovative method for wire rope fatigue life evaluation. OIPEEC Conference, Marz 2013, Simulating Rope Applications. pp. 115-126 Oxford 2013. Search in Google Scholar

[25] T.L.M. Morgado, A. Sousa e Brito: A failure analysis study of a prestressed steel cable of a suspension bridge Case Stud Constr Mater, 3, pp. 40-47, 2015 https://doi.org/10.1016/j.cscm.2015.04.00110.1016/j.cscm.2015.04.001 Search in Google Scholar

[26] A.G. Costello: Theory of Wire Rope, second edition, Springer, New York 1997.10.1007/978-1-4612-1970-5 Search in Google Scholar

[27] A. Hemer, L. Milović, A. Grbovic, B. Aleksic, V. Aleksic: Numerical determination and experimental validation of the fracture toughness of welded joints. Engineering Failure Analysis, Volume 107, 2020, https://doi.org/10.1016/j.eng-failanal.2019.104220. Search in Google Scholar

[28] A. Sedmak, M. Rakin: Application of fracture mechanics in assessment of structural integrity, Monograph of the VIII International Fracture Mechanics Summer School, TMF and DIVK, Belgrade, pp. 373-386, 2004. Search in Google Scholar

[29] D. Zhao, Y.X. Liu, X.T. Ren et al.: Fatigue life prediction of wire rope based on grey particle filter method under small sample condition. Eksploatacja i Niezawodność – Maintenance and Reliability Volume 23 no. 3 s 456-463, 2021 http://dx.doi.org/10.17531/ein.2021.3.610.17531/ein.2021.3.6 Search in Google Scholar

[30] Hankus J.: Budowa i własności mechaniczne lin stalowych Wyd. II GIG, Katowice 2000r. Search in Google Scholar

[31] J. Zhang, D. Wang, D. Song, D. Zhang, C. Zhang, D. Wang, et al.: Tribo-fatigue behaviors of steel wire rope under bending fatigue with the variable tension Wear, Volume 428-429, pp. 154-161,2019 https://doi.org/10.1016/j.wear.2019.03.00410.1016/j.wear.2019.03.004 Search in Google Scholar

[32] D. Battini, L. Solazzi, A.M. Lezzi, F. Clerici, G. Donzella: Prediction of steel wire rope fatigue life based on thermal measurements. International Journal of Mechanical Sciences. Elsevier 15 September 2020 https://doi.org/10.1016/j.ijmecsci.2020.10576110.1016/j.ijmecsci.2020.105761 Search in Google Scholar

[33] Ch. Yoan, M. Yann, G. Bles, K. Devos, M. Keryer, M. Arhant, P. Davies: Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering. Vol. 199, Elsevier, 1 March 2020 https://doi.org/10.1016/j.oceaneng.2020.10701110.1016/j.oceaneng.2020.107011 Search in Google Scholar

[34] M.H. Lafitte, A.R. Bunsell: The fatigue behaviour of Kevlar-29 fibres. J. Mater. Sci. 17 (8), pp. 2391-2397, 1982. Search in Google Scholar