Open Access

Experimental investigation of stereolithography and digital light processing additive manufactured pallets


Cite

Fig. 1.

Depiction of printing (a) SLA: point-based approach; (b) DLP: area scanning
Depiction of printing (a) SLA: point-based approach; (b) DLP: area scanning

Fig. 2.

Surface morphology depiction of 1-mm printed parts at 1-mm tolerance resolution using (a) CAD geometry (b) DLP (c) SLA
Surface morphology depiction of 1-mm printed parts at 1-mm tolerance resolution using (a) CAD geometry (b) DLP (c) SLA

Fig. 3.

SLA and DLP 3D printing of tensile specimen dimensions: ASTM D638
SLA and DLP 3D printing of tensile specimen dimensions: ASTM D638

Fig. 4.

GUI type IV tensile specimen (a) Preform: SLA, (b) 3D sprint: DLP software
GUI type IV tensile specimen (a) Preform: SLA, (b) 3D sprint: DLP software

Fig. 5.

3D printing of coupons (a) SLA Form 3 (b) DLP Figure 4 Standalone (CITD additive lab facility, MSME Tool room facility, Hyderabad, Govt. of India)
3D printing of coupons (a) SLA Form 3 (b) DLP Figure 4 Standalone (CITD additive lab facility, MSME Tool room facility, Hyderabad, Govt. of India)

Fig. 6.

Bottom-up approach 3D printing of pallet coupons in DLP method
Bottom-up approach 3D printing of pallet coupons in DLP method

Fig. 7.

3D printed ASTM D638 type IV pallet coupon using (a) SLA process: form 3 printer (b) DLP method: stand-alone printer
3D printed ASTM D638 type IV pallet coupon using (a) SLA process: form 3 printer (b) DLP method: stand-alone printer

Fig. 8.

(a) Complete process for developing a commercial pallet tensile coupon replicator (CITD, Hyderabad facilities); (b) bottom half; (c) top half of injection mould die; (d) ABS pallet tensile specimen coupon prepared with gate and runner
(a) Complete process for developing a commercial pallet tensile coupon replicator (CITD, Hyderabad facilities); (b) bottom half; (c) top half of injection mould die; (d) ABS pallet tensile specimen coupon prepared with gate and runner

Fig. 9.

Investigation of (a) uniaxial tensile test of SLA and DLP 3D printed ASTM D638 type IV samples; machine used: Instron 5966 model, (b) Shore A hardness durometer
Investigation of (a) uniaxial tensile test of SLA and DLP 3D printed ASTM D638 type IV samples; machine used: Instron 5966 model, (b) Shore A hardness durometer

Fig. 10.

Design of a four-way pallet as per the ISO MH1-2016 standard in CAD software
Design of a four-way pallet as per the ISO MH1-2016 standard in CAD software

Fig. 11.

Pallet 3D printing in accordance with the ISO MH1-2016 standard for optimized values using (a) SLA (b) DLP
Pallet 3D printing in accordance with the ISO MH1-2016 standard for optimized values using (a) SLA (b) DLP

Fig. 12.

Finite element model of the ASTM D638 model in ABAQUS 6.14
Finite element model of the ASTM D638 model in ABAQUS 6.14

Fig. 13.

Simulations of 3D-printed test coupons for pallets corresponding to ABS (commercial replication: injection molding) (1); Pro-BLK-10 (SLA process) (2); and GrayV4 (DLP method) (3) for (a) maximum stress, (b) maximum deformation
Simulations of 3D-printed test coupons for pallets corresponding to ABS (commercial replication: injection molding) (1); Pro-BLK-10 (SLA process) (2); and GrayV4 (DLP method) (3) for (a) maximum stress, (b) maximum deformation

Fig. 14.

Experimental uniaxial tensile test results for ABS (commercial replication: injection moulding), Pro-BLK-10 (SLA process), and GrayV4 (DLP method)
Experimental uniaxial tensile test results for ABS (commercial replication: injection moulding), Pro-BLK-10 (SLA process), and GrayV4 (DLP method)

Fig. 15.

Prismatic bar with concentrated force
Prismatic bar with concentrated force

Fig. 16.

Simulated, experimental, and analytical uniaxial tensile test results for ABS, Pro-BLK, Grey V4 for injection molding, SLA and DLP 3D printed samples corresponding to (a) deflection (displacement) (b) stress
Simulated, experimental, and analytical uniaxial tensile test results for ABS, Pro-BLK, Grey V4 for injection molding, SLA and DLP 3D printed samples corresponding to (a) deflection (displacement) (b) stress

Fig. 17.

Coupon pallet 100 mm × 30 mm cross section being considered for (a) side view representing UDL load and (b) top deck of pallet corresponding to five beam elements
Coupon pallet 100 mm × 30 mm cross section being considered for (a) side view representing UDL load and (b) top deck of pallet corresponding to five beam elements

Fig. 18.

Global stiffness matrix of a simple supported beam with five elements corresponding to coupon pallet design
Global stiffness matrix of a simple supported beam with five elements corresponding to coupon pallet design

Fig. 19.

Beam representation for (a) 3D FEA model with fixed ends, (b) displacement module
Beam representation for (a) 3D FEA model with fixed ends, (b) displacement module

Fig. 20.

Basis of boundary conditions for pallet analysis
Basis of boundary conditions for pallet analysis

Fig. 21.

ISO Pallet CAD model and finite element model with load distribution
ISO Pallet CAD model and finite element model with load distribution

Fig. 22.

Displacement and stress contours: ISO pallet corresponding to ABS material
Displacement and stress contours: ISO pallet corresponding to ABS material

Fig. 23.

Displacement and stress contours: ISO pallet corresponding to DLP material
Displacement and stress contours: ISO pallet corresponding to DLP material

Fig. 24.

Displacement and stress contour: ISO pallet corresponding to SLA material
Displacement and stress contour: ISO pallet corresponding to SLA material

Fig. 25.

Comparisons of (a) von mises stress and (b) displacement on the basis of pallet supports
Comparisons of (a) von mises stress and (b) displacement on the basis of pallet supports

Fig. 26.

Comparisons of deflection and stresses for DLP-manufactured pallet
Comparisons of deflection and stresses for DLP-manufactured pallet

Fig. 27.

Comparisons of deflection and von mises stresses for SLA manufactured pallet
Comparisons of deflection and von mises stresses for SLA manufactured pallet

Fig. 28.

(a) CAD model (b) Finite element model for optimized pallet design
(a) CAD model (b) Finite element model for optimized pallet design

Fig. 29.

Displacement and stress contour: optimized pallet design (ABS material)
Displacement and stress contour: optimized pallet design (ABS material)

Fig. 30.

Displacement and stress contour: optimized pallet design (DLP material)
Displacement and stress contour: optimized pallet design (DLP material)

Fig. 31.

Displacement and stress contour: optimized pallet design (SLA material)
Displacement and stress contour: optimized pallet design (SLA material)

Fig. 32.

Optimized pallet analysis correlation to (a) von mises stress (b) deflection
Optimized pallet analysis correlation to (a) von mises stress (b) deflection

Fig. 33.

Deflection and stresses for DLP-manufactured pallet
Deflection and stresses for DLP-manufactured pallet

Fig. 34.

Deflection and von mises stresses for SLAmanufactured pallet
Deflection and von mises stresses for SLAmanufactured pallet

Fig. 35.

SEM images for additive-manufactured (a) DLP (b) SLA pallet
SEM images for additive-manufactured (a) DLP (b) SLA pallet

Fig. 36.

AFM plots of additive-manufactured (a) DLP (b) SLA pallets
AFM plots of additive-manufactured (a) DLP (b) SLA pallets

Fig. 37.

XRD plots for 3D printed pallets availing (a) DLP (b) SLA
XRD plots for 3D printed pallets availing (a) DLP (b) SLA

Roughness values obtained from AFM for DLP and SLA pallets

S. No. Pallet-making process Roughness factor (nm)
1. DLP 95.18
2. SLA 207.35

Simulated versus physical uniaxial tensile test for ABS, Pro-BLK, and Grey V4 for injection molding, SLA, and DLP 3D printed samples

Material Parameter Simulation Analytical Physical testing Difference between simulation & testing (in %)
ABS Stress (MPa) 37.78 43.33 40.19 6.37
Displacement(mm) 1.80 1.88 1.62 10
GrayV4 Stress (MPa) 55.76 57.52 61.55 10.38
Displacement(mm) 2.89 2.36 3.25 12.45
ProBLK-10 Stress (MPa) 51.31 54.37 57.34 11.75
Displacement(mm) 2.88 2.69 3.19 10.76

3D printing machine details: SLA – Form 3 and DLP

Machine Name Form labs 3 Machine Name DLP Standalone System
Build 145 × Build 124.8 ×
Volume 145 × 185 cc Volume 70.2 × 196 cc
Resolution 25 μ Resolution 1920×1080
Laser power 250 mW Wavelength 405 nm
Laser Spot size 85μ Pixel pitch 65μ

AHP-TOPSIS methodology for 3D printed pallets using the SLA process

S. No. Layer thickness (μm) Material Weighted matrix Closeness to ideal solution Closeness coefficient Rank
W_TS W_%E W_H Si+ Si- Pi
1 25 Grey V4 0.24 0.07 0.03 0.02 0.16 0.87 4
2 25 Clear v4 0.24 0.07 0.03 0.03 0.16 0.86 5
3 25 Model V2 0.23 0.06 0.04 0.03 0.17 0.86 6
4 50 Grey V4 0.23 0.07 0.06 0.01 0.16 0.92 1
5 50 Clear 0.23 0.06 0.06 0.01 0.16 0.92 2
6 50 Model V2 0.22 0.06 0.04 0.03 0.17 0.84 8
7 100 Grey V4 0.23 0.06 0.03 0.03 0.16 0.85 7
8 100 Clear 0.22 0.06 0.05 0.02 0.16 0.89 3
9 100 Model V2 0.22 0.05 0.03 0.03 0.17 0.83 9

Response variables for SLA 3D-printed pallet specimens

Experiment No. Layer thickness (μm) Material Tensile strength (MPa) Elongation in (%) Hardness (Shore D)
1 25 Grey V4 65.00 6 50.00
2 25 Clear V4 63.05 5.87 48.50
3 25 Model V2 61.00 5 55.00
4 50 Grey V4 61.55 5.85 85.00
5 50 Clear V4 61.40 5.733 82.45
6 50 Model V2 59.48 4.89 53.35
7 100 Grey V4 61.43 5.67 47.50
8 100 Clear V4 59.97 5.59 80.75
9 100 Model V2 58.98 4.67 52.25

Orthogonal L9 array experimental runs for SLA 3D printing of pallet coupons

Experimental runs Layer thickness Material
1 25 Gray V4
2 25 Clear v4
3 25 Model V2
4 50 Gray V4
5 50 Clear
6 50 Model V2
7 100 Gray V4
8 100 Clear
9 100 Model V2

Orthogonal L9 array experimental runs for DLP 3D printing of pallet coupons

Experimental runs Layer thickness Material
1 30 FlexBLK-20
2 30 ToughBLK-20
3 30 ProBLK-10
4 40 ToughBLK-20
5 40 ProBLK-10
6 40 FlexBLK-20
7 50 ProBLK-10
8 50 FlexBLK-20
9 50 ToughBLK-20

Material properties of the industry grade pallet 3D printing materials—SLA

Materials Grey V4 Model V2 Clear V2
Tensile strength (MPa) 65 42 65
Percentage of elongation 6.2 4.8 6.2
Izod notched impact (J/m) 25 24 25
Heat deflection temperature (°C) 73.1 75 73.1

Material properties of the industry grade pallet 3D printing materials—DLP

Materials Flex BLK-20 Tough BLK-20 Pro BLK-10
Tensile strength (MPa) 35 42 56
Percentage of elongation 71 27 12
Izod notched impact (J/m) 105 35 22
Heat deflection temperature (°C) 41 55 70

AHP-TOPSIS method for 3D printed pallets using DLP method

S. no. Layer thickness (μm) Material Weighted matrix Closeness to ideal solution Closeness coefficient Rank
W_TS W_%E W_H Si+ Si- Pi
1 30 FlexBLK-20 0.17 0.10 0.04 0.12 0.09 0.41 4
2 30 ToughBLK-20 0.22 0.04 0.04 0.10 0.06 0.37 7
3 30 ProBLK-10 0.29 0.02 0.04 0.09 0.13 0.60 3
4 40 ToughBLK-20 0.21 0.04 0.04 0.11 0.05 0.33 8
5 40 ProBLK-10 0.29 0.02 0.04 0.08 0.13 0.61 2
6 40 FlexBLK-20 0.17 0.10 0.04 0.13 0.08 0.39 5
7 50 ProBLK-10 0.30 0.02 0.05 0.08 0.13 0.61 1
8 50 FlexBLK-20 0.16 0.10 0.04 0.13 0.08 0.38 6
9 50 ToughBLK-20 0.20 0.04 0.04 0.11 0.05 0.30 9

Close to ideal solution for SLA and DLP 3D printed pallets: AHP-TOPSIS

Process Layer thickness (μm) Material
SLA 50 Grey V4
DLP 50 ProBLK-10

AHP pairwise computation matrix

Attributes Tensile strength % Elongation Hardness
Tensile strength 1.00 5.00 4.00
% Elongation 0.20 1.00 2.00
Hardness 0.25 0.50 1.00

Weights disguised for each response variable

Variable Weight
Tensile strength 0.687
% Elongation 0.186
Hardness 0.127

Process parameters corresponding to SLA 3D printing of pallet coupons

Layer Thickness (μm) Material
25 Gray V4
50 Model V3
100 Clear V4

Process parameters corresponding to DLP 3D printing of pallet coupons

Layer thickness (μm) Material
30 FlexBlack-20
40 ToughBlack-20
50 ProBlack-10

Simulation and analytical values for displacement for a coupon sample

Parameter Simulation Analytical Difference between (percentage) simulation and analytical
Displacement (mm) 7.29 7.8 6.5

Response variables for DLP 3D-printed pallet specimens

Experiment No. Layer thickness (μm) Material Tensile strength (MPa) Elongation (%) Hardness (Shore D)
1 30 FlexBLK-20 33.25 71.25 68.75
2 30 ToughBLK-20 41.75 28.50 77.00
3 30 ProBLK-10 56.05 11.4 75.53
4 40 ToughBLK-20 40.50 27.65 74.69
5 40 ProBLK-10 57.23 11.64 77.12
6 40 FlexBLK-20 32.25 69.11 66.69
7 50 ProBLK-10 57.34 12 79.50
8 50 FlexBLK-20 31.59 67.69 65.31
9 50 ToughBLK-20 39.66 27.08 73.15

Comparison of rack support vs. floor support, rack support vs. forklift support, and rack support vs. conveyor support for DLP

Comparison for deflection Comparison for von mises stress
Rack vs. floor Rack vs. forklift Rack vs. conveyor Rack vs. floor Rack vs. forklift Rack vs. conveyor
90.89 61.80 37.97 48.55 64.59 9.69
90.82 61.86 37.88 48.52 64.58 9.72
90.88 61.85 37.87 48.56 64.59 9.76
90.81 61.84 38.01 48.53 64.58 9.76
90.89 61.82 38.00 48.52 64.60 9.81
90.78 61.92 37.88 48.54 64.66 9.81
90.89 61.92 37.85 48.53 64.68 9.89
90.76 61.90 38.10 48.47 64.69 9.92
90.88 61.75 37.89 48.44 64.74 10.06
90.65 61.68 37.85 48.46 64.77 10.31
90.91 62.24 37.76 48.39 64.91 10.78
90.14 61.97 38.03 47.96 65.16 11.76

Comparison of rack support vs. floor support, rack support vs. forklift support, and rack support vs. conveyor support for SLA

Comparison for deflection Comparison for von-misses stress
Rack vs. floor Rack vs. forklift Rack vs. conveyor Rack vs. floor Rack vs. forklift Rack vs. conveyor
90.33 61.21 37.88 46.65 64.64 9.22
90.34 61.24 37.87 46.64 64.63 9.23
90.35 61.28 37.85 46.65 64.65 9.23
90.36 61.33 37.83 46.63 64.64 9.23
90.24 61.25 37.94 46.64 64.60 9.29
90.23 61.24 37.83 46.62 64.59 9.25
90.24 61.30 37.79 46.64 64.60 9.33
90.24 61.17 37.96 46.61 64.59 9.27
90.24 61.25 37.94 46.62 64.60 9.39
90.25 61.37 37.91 46.56 64.58 9.47
90.22 61.41 37.50 46.58 64.61 9.59
90.22 60.87 38.04 46.36 64.55 10.00

Residual stress values obtained from XRD

S. No. Pallet-making process Residual stress (MPa)
1 DLP 338.23
2 SLA 122.6
eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties