Cite

Hua CQ, Zhou SH, Zhou CW, Dou WD, Li HN, Lu YH, et al. Work function modulation of graphene with binary mixture of Cu and C60F36. Carbon. 2021;179:172–9; https://doi.org/10.1016/j.carbon.2021.04.022 HuaCQ ZhouSH ZhouCW DouWD LiHN LuYH Work function modulation of graphene with binary mixture of Cu and C60F36 Carbon 2021 179 172 9 https://doi.org/10.1016/j.carbon.2021.04.022 10.1016/j.carbon.2021.04.022 Search in Google Scholar

Zhou J, Zhang J, Deng Y, Zhao H, Zhang P, Fu S, et al. Defect-mediated work function regulation in graphene film for high-performing triboelectric nano-generators. Nano Energy. 2022;99:107411; https://doi.org/10.1016/j.nanoen.2022.107411 ZhouJ ZhangJ DengY ZhaoH ZhangP FuS Defect-mediated work function regulation in graphene film for high-performing triboelectric nano-generators Nano Energy 2022 99 107411 https://doi.org/10.1016/j.nanoen.2022.107411 10.1016/j.nanoen.2022.107411 Search in Google Scholar

Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–10; https://doi.org/10.1038/nature07719 KimKS ZhaoY JangH LeeSY KimJM KimKS Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 2009 457 706 10 https://doi.org/10.1038/nature07719 10.1038/nature0771919145232 Search in Google Scholar

She Z, Uceda M, Pope MA. Encapsulating a responsive hydrogel core for void space modulation in high-stability graphene-wrapped silicon anodes. ACS Appl Mater Interfaces. 2022;14(8):10363–72; https://doi.org/10.1021/acsami.1c23356 SheZ UcedaM PopeMA Encapsulating a responsive hydrogel core for void space modulation in high-stability graphene-wrapped silicon anodes ACS Appl Mater Interfaces 2022 14 8 10363 72 https://doi.org/10.1021/acsami.1c23356 10.1021/acsami.1c2335635175023 Search in Google Scholar

Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X. 12.35% efficient graphene quantum dots/silicon hetero-junction solar cells using graphene transparent electrode. Nano Energy. 2017;31:359–66; https://doi.org/10.1016/j.nanoen.2016.11.051 DiaoS ZhangX ShaoZ DingK JieJ ZhangX 12.35% efficient graphene quantum dots/silicon hetero-junction solar cells using graphene transparent electrode Nano Energy 2017 31 359 66 https://doi.org/10.1016/j.nanoen.2016.11.051 10.1016/j.nanoen.2016.11.051 Search in Google Scholar

Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay JJ, et al. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem Soc Rev. 2018;47:4981–5037; https://doi.org/10.1039/C8CS00067K LiC CaoQ WangF XiaoY LiY DelaunayJJ Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion Chem Soc Rev 2018 47 4981 5037 https://doi.org/10.1039/C8CS00067K 10.1039/C8CS00067K29736528 Search in Google Scholar

Rehman MA, Roy SB, Akhtar I, Bhopal MF, Choi W, Nazir G, et al. Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon. 2019;148:187–95; https://doi.org/10.1016/j.carbon.2019.03.079 RehmanMA RoySB AkhtarI BhopalMF ChoiW NazirG Thickness-dependent efficiency of directly grown graphene based solar cells Carbon 2019 148 187 95 https://doi.org/10.1016/j.carbon.2019.03.079 10.1016/j.carbon.2019.03.079 Search in Google Scholar

Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy. 2017;2:17032; https://doi.org/10.1038/nenergy.2017.32 YoshikawaK KawasakiH YoshidaW IrieT KonishiK NakanoK Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% Nat Energy 2017 2 17032 https://doi.org/10.1038/nenergy.2017.32 10.1038/nenergy.2017.32 Search in Google Scholar

Cheng H, Liu W, Liu Z, Yang Z, Ma D, Du H, et al. Emitter formation with boron diffusion from PECVD deposited boron-doped silicon oxide for high-efficiency TOPCon solar cells. Sol Energy Mater Sol Cells. 2022;240:111713; https://doi.org/10.1016/j.solmat.2022.111713 ChengH LiuW LiuZ YangZ MaD DuH Emitter formation with boron diffusion from PECVD deposited boron-doped silicon oxide for high-efficiency TOPCon solar cells Sol Energy Mater Sol Cells 2022 240 111713 https://doi.org/10.1016/j.solmat.2022.111713 10.1016/j.solmat.2022.111713 Search in Google Scholar

Li X, Zhu H, Wang K, Cao A, Wei J, Li C, et al. Graphene-on-silicon schottky junction solar cells. Adv Mater. 2010;22(25):2743–8; https://doi.org/10.1002/adma.200904383 LiX ZhuH WangK CaoA WeiJ LiC Graphene-on-silicon schottky junction solar cells Adv Mater 2010 22 25 2743 8 https://doi.org/10.1002/adma.200904383 10.1002/adma.20090438320379996 Search in Google Scholar

Liu SY, Zhou L, Yao LY, Chai LY, Li L. One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature. J Alloys Compd. 2014;612:126–33; https://doi.org/10.1016/j.jallcom.2014.05.129 LiuSY ZhouL YaoLY ChaiLY LiL One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature J Alloys Compd 2014 612 126 33 https://doi.org/10.1016/j.jallcom.2014.05.129 10.1016/j.jallcom.2014.05.129 Search in Google Scholar

Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, et al. 18.5% efficient graphene/GaAs van der waals heterostructure solar cell. Nano Energy. 2015;16:310–9; https://doi.org/10.1016/j.nanoen.2015.07.003 LiX ChenW ZhangS WuZ WangP XuZ 18.5% efficient graphene/GaAs van der waals heterostructure solar cell Nano Energy 2015 16 310 9 https://doi.org/10.1016/j.nanoen.2015.07.003 10.1016/j.nanoen.2015.07.003 Search in Google Scholar

Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, et al. Toward clean and crackless transfer of graphene. ACS Nano. 2011;5(11):9144–53; https://doi.org/10.1021/nn203377t LiangX SperlingBA CalizoI ChengG HackerCA ZhangQ Toward clean and crackless transfer of graphene ACS Nano 2011 5 11 9144 53 https://doi.org/10.1021/nn203377t 10.1021/nn203377t21999646 Search in Google Scholar

Lu CC, Jin C, Lin YC, Huang CR, Suenaga K, Chiu PW. Characterization of graphene grown on bulk and thin film nickel. Langmuir. 2011;27(22):13748–53; https://doi.org/10.1021/la2022038 LuCC JinC LinYC HuangCR SuenagaK ChiuPW Characterization of graphene grown on bulk and thin film nickel Langmuir 2011 27 22 13748 53 https://doi.org/10.1021/la2022038 10.1021/la202203821967558 Search in Google Scholar

Liu J, Sun W, Wei D, Song X, Jiao T, He S, et al. Direct growth of graphene nanowalls on the crystalline silicon for solar cells. Appl Phys Lett. 2015;106:043904; http://dx.doi.org/10.1063/1.4907284 LiuJ SunW WeiD SongX JiaoT HeS Direct growth of graphene nanowalls on the crystalline silicon for solar cells Appl Phys Lett 2015 106 043904 http://dx.doi.org/10.1063/1.4907284 10.1063/1.4907284 Search in Google Scholar

Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, et al. Raman spectroscopy of graphene edges. Nano Lett. 2009;9(4):1433–41; https://doi.org/10.1021/nl8032697 CasiraghiC HartschuhA QianH PiscanecS GeorgiC FasoliA Raman spectroscopy of graphene edges Nano Lett 2009 9 4 1433 41 https://doi.org/10.1021/nl8032697 10.1021/nl803269719290608 Search in Google Scholar

Bhopal MF, Akbar K, Rehman MA, Lee DW, Rehman AU, Seo Y, et al. High-κ dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells. Carbon. 2017;125:56–62; https://doi.org/10.1016/j.carbon.2017.09.038 BhopalMF AkbarK RehmanMA LeeDW RehmanAU SeoY High-κ dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells Carbon 2017 125 56 62 https://doi.org/10.1016/j.carbon.2017.09.038 10.1016/j.carbon.2017.09.038 Search in Google Scholar

Rehman MA, Akhtar I, Choi W, Akbar K, Farooq A, Hussain S, et al. Influence of an Al2O3 interlayer in a directly grown graphene-silicon schottky junction solar cell. Carbon. 2018;132:157–64; https://doi.org/10.1016/j.carbon.2018.02.042 RehmanMA AkhtarI ChoiW AkbarK FarooqA HussainS Influence of an Al2O3 interlayer in a directly grown graphene-silicon schottky junction solar cell Carbon 2018 132 157 64 https://doi.org/10.1016/j.carbon.2018.02.042 10.1016/j.carbon.2018.02.042 Search in Google Scholar

Rehman MA, Roy SB, Gwak D, Akhtar I, Nasir N, Kumar S, et al. Solar cell based on vertical graphene nano hills directly grown on silicon. Carbon. 2020;164:235–43; https://doi.org/10.1016/j.carbon.2020.04.001 RehmanMA RoySB GwakD AkhtarI NasirN KumarS Solar cell based on vertical graphene nano hills directly grown on silicon Carbon 2020 164 235 43 https://doi.org/10.1016/j.carbon.2020.04.001 10.1016/j.carbon.2020.04.001 Search in Google Scholar

Kim M, Rehmana MA, Kanga KM, Wanga Y, Parkc S, Lee HS, et al. The role of oxygen defects engineering via passivation of the Al2O3 interfacial layer for the direct growth of a graphene-silicon Schottky junction solar cell. Appl Mater Today. 2022;26:101267; https://doi.org/10.1016/j.apmt.2021.101267 KimM RehmanaMA KangaKM WangaY ParkcS LeeHS The role of oxygen defects engineering via passivation of the Al2O3 interfacial layer for the direct growth of a graphene-silicon Schottky junction solar cell Appl Mater Today 2022 26 101267 https://doi.org/10.1016/j.apmt.2021.101267 10.1016/j.apmt.2021.101267 Search in Google Scholar

Li N, Zhen Z, Zhang R, Xu Z, Zheng Z, He L. Nucleation and growth dynamics of graphene grown by radio frequency plasmaenhanced chemical vapor deposition. Sci Rep. 2021;11:6007; https://doi.org/10.1038/s41598-021-85537-3 LiN ZhenZ ZhangR XuZ ZhengZ HeL Nucleation and growth dynamics of graphene grown by radio frequency plasmaenhanced chemical vapor deposition Sci Rep 2021 11 6007 https://doi.org/10.1038/s41598-021-85537-3 10.1038/s41598-021-85537-3796637533727653 Search in Google Scholar

Wan L, Zhang C, Ge K, Yang X, Li F, Yan W, et al. Conductive Hole-selective passivating contacts for crystalline silicon solar cells. Adv Energy Mater. 2020:1903851; https://doi.org/10.1002/aenm.201903851 WanL ZhangC GeK YangX LiF YanW Conductive Hole-selective passivating contacts for crystalline silicon solar cells Adv Energy Mater 2020 1903851 https://doi.org/10.1002/aenm.201903851 10.1002/aenm.201903851 Search in Google Scholar

Jiao T, Liu J, Wei D, Feng Y, Song X, Shi H, et al. Composite transparent electrode of graphene nanowalls and silver nanowires on micropyramidal si for high-efficiency schottky junction solar cells. ACS Appl Mater Interfaces. 2015;7(36):20179–83; https://doi.org/10.1021/acsami.5b05565 JiaoT LiuJ WeiD FengY SongX ShiH Composite transparent electrode of graphene nanowalls and silver nanowires on micropyramidal si for high-efficiency schottky junction solar cells ACS Appl Mater Interfaces 2015 7 36 20179 83 https://doi.org/10.1021/acsami.5b05565 10.1021/acsami.5b0556526308388 Search in Google Scholar

Wu JB, Lin ML, Cong X, Liua XN, Tan PH. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. 2018;47(5):1822; https://doi.org/10.1039/C6CS00915H WuJB LinML CongX LiuaXN TanPH Raman spectroscopy of graphene-based materials and its applications in related devices Chem Soc Rev 2018 47 5 1822 https://doi.org/10.1039/C6CS00915H 10.1039/C6CS00915H29368764 Search in Google Scholar

Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126; https://doi.org/10.1063/1.1674108 TuinstraF KoenigJL Raman spectrum of graphite J Chem Phys 1970 53 1126 https://doi.org/10.1063/1.1674108 10.1063/1.1674108 Search in Google Scholar

Cançado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011;11(8):3190; https://doi.org/10.1021/nl201432g CançadoLG JorioA Martins FerreiraEH StavaleF AcheteCA CapazRB Quantifying defects in graphene via Raman spectroscopy at different excitation energies Nano Lett 2011 11 8 3190 https://doi.org/10.1021/nl201432g 10.1021/nl201432g21696186 Search in Google Scholar

Kim YS, Joo K, Jerng SK, Lee JH, Yoonde E, Chun SH. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography. Nanoscale. 2014;6(17):10100–05; https://doi.org/10.1039/C4NR02001D KimYS JooK JerngSK LeeJH YoondeE ChunSH Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography Nanoscale 2014 6 17 10100 05 https://doi.org/10.1039/C4NR02001D 10.1039/C4NR02001D Search in Google Scholar

Bi E, Chen H, Yang X, Ye F, Yin M, Han L. Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications. Sci Rep. 2015;5:13214; https://doi.org/10.1038/srep13214 BiE ChenH YangX YeF YinM HanL Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications Sci Rep 2015 5 13214 https://doi.org/10.1038/srep13214 10.1038/srep13214453860326279305 Search in Google Scholar

Zhang R, Hollars DR, Kanicki J. High efficiency Cu(In,Ga)Se2 flexible solar cells fabricated by roll-to-roll metallic precursor co-sputtering method. Jpn J Appl Phys. 2013;52:092302; http://dx.doi.org/10.7567/JJAP.52.092302 ZhangR HollarsDR KanickiJ High efficiency Cu(In,Ga)Se2 flexible solar cells fabricated by roll-to-roll metallic precursor co-sputtering method Jpn J Appl Phys 2013 52 092302 http://dx.doi.org/10.7567/JJAP.52.092302 10.7567/JJAP.52.092302 Search in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties