Open Access

Decomposition mechanisms of continuously cooled bainitic rail in the critical heat-affected zone of a flash-butt welded joints


Cite

Hasan SM, Ghosh M, Chakrabarti D, Singh SB. Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels. Mater Sci Eng A. 2020;771:138590. https://doi.org/10.1016/j.msea.2019.138590 HasanSM GhoshM ChakrabartiD SinghSB Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels Mater Sci Eng A 2020 771 138590 https://doi.org/10.1016/j.msea.2019.138590 10.1016/j.msea.2019.138590 Search in Google Scholar

Liu JP, Li YQ, Jin J, Zhang YH, Liu FS, Su R, et al. Effect of processing techniques on microstructure and mechanical properties of carbide-free bainitic rail steels. Mater Today Commun. 2020;25:101531. https://doi.org/10.1016/j.mtcomm.2020.101531 LiuJP LiYQ JinJ ZhangYH LiuFS SuR Effect of processing techniques on microstructure and mechanical properties of carbide-free bainitic rail steels Mater Today Commun 2020 25 101531 https://doi.org/10.1016/j.mtcomm.2020.101531 10.1016/j.mtcomm.2020.101531 Search in Google Scholar

Milenin A, Zalecki W, Pernach M, Rauch Ł, Kuziak R, Zygmunt T, et al. Numerical simulation of manufacturing process chain for pearlitic and bainitic steel rails. Arch Civ Mech Eng. 2020;20:107. https://doi.org/10.1007/s43452-020-00107-0 MileninA ZaleckiW PernachM RauchŁ KuziakR ZygmuntT Numerical simulation of manufacturing process chain for pearlitic and bainitic steel rails Arch Civ Mech Eng 2020 20 107 https://doi.org/10.1007/s43452-020-00107-0 10.1007/s43452-020-00107-0 Search in Google Scholar

Adamczyk-Cieślak B, Koralnik M, Kuziak R, Majchrowicz K, Zygmunt T, Mizera J. The impact of retained austenite on the mechanical properties of bainitic and dual phase steels. J Mater Eng Perform. 2022:1–5. https://doi.org/10.1007/s11665-021-06547-w Adamczyk-CieślakB KoralnikM KuziakR MajchrowiczK ZygmuntT MizeraJ The impact of retained austenite on the mechanical properties of bainitic and dual phase steels J Mater Eng Perform 2022 1 5 https://doi.org/10.1007/s11665-021-06547-w 10.1007/s11665-021-06547-w Search in Google Scholar

Chen Y, Ren R, Zhao X, Chen C, Pan R. Study on the surface microstructure evolution and wear property of bainitic rail steel under dry sliding wear. Wear. 2020; 448–449:203217. https://doi.org/10.1016/j.wear.2020.203217 ChenY RenR ZhaoX ChenC PanR Study on the surface microstructure evolution and wear property of bainitic rail steel under dry sliding wear Wear 2020 448–449 203217. https://doi.org/10.1016/j.wear.2020.203217 10.1016/j.wear.2020.203217 Search in Google Scholar

Hu Y, Guo LC, Maiorino M, Liu JP, Ding HH, Lewis R, et al. Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions. Wear. 2020;460–461:203455. https://doi.org/10.1016/j.wear.2020.203455 HuY GuoLC MaiorinoM LiuJP DingHH LewisR Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions Wear 2020 460–461 203455. https://doi.org/10.1016/j.wear.2020.203455 10.1016/j.wear.2020.203455 Search in Google Scholar

Adamczyk-Cieślak B, Koralnik M, Kuziak R, Brynk T, Zygmunt T, Mizera J. Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels. Mater Sci Eng A. 2019;747:144–53. https://doi.org/10.1016/j.msea.2019.01.043 Adamczyk-CieślakB KoralnikM KuziakR BrynkT ZygmuntT MizeraJ Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels Mater Sci Eng A 2019 747 144 53 https://doi.org/10.1016/j.msea.2019.01.043 10.1016/j.msea.2019.01.043 Search in Google Scholar

Królicka A, Lesiuk G, Radwański K, Kuziak R, Janik A, Mech R, et al. Comparison of fatigue crack growth rate: pearlitic rail versus bainitic rail. Int J Fatigue. 2021:106280. https://doi.org/10.1016/j.ijfatigue.2021.106280 KrólickaA LesiukG RadwańskiK KuziakR JanikA MechR Comparison of fatigue crack growth rate: pearlitic rail versus bainitic rail Int J Fatigue 2021 106280. https://doi.org/10.1016/j.ijfatigue.2021.106280 10.1016/j.ijfatigue.2021.106280 Search in Google Scholar

Królicka A, Radwański K, Kuziak R, Zygmunt T, Ambroziak A. Microstructure-based approach to the evaluation of welded joints of bainitic rails designed for high-speed railways. J Constr Steel Res. 2020;175. https://doi.org/10.1016/j.jcsr.2020.106372 KrólickaA RadwańskiK KuziakR ZygmuntT AmbroziakA Microstructure-based approach to the evaluation of welded joints of bainitic rails designed for high-speed railways J Constr Steel Res 2020 175 https://doi.org/10.1016/j.jcsr.2020.106372 10.1016/j.jcsr.2020.106372 Search in Google Scholar

Morawiec M, Kik T, Stano S, Różański M, Grajcar A. Numerical simulation and experimental analysis of thermal cycles and phase transformation behavior of laser-welded advanced multiphase steel. Symmetry (Basel). 2022;14:477. https://doi.org/10.3390/sym14030477 MorawiecM KikT StanoS RóżańskiM GrajcarA Numerical simulation and experimental analysis of thermal cycles and phase transformation behavior of laser-welded advanced multiphase steel Symmetry (Basel) 2022 14 477 https://doi.org/10.3390/sym14030477 10.3390/sym14030477 Search in Google Scholar

Fang K, Yang JG, Liu XS, Song KJ, Fang HY, Bhadeshia HKDH. Regeneration technique for welding nanostructured bainite. Mater Des. 2013;50:38–43. https://doi.org/10.1016/j.matdes.2013.02.019 FangK YangJG LiuXS SongKJ FangHY BhadeshiaHKDH Regeneration technique for welding nanostructured bainite Mater Des 2013 50 38 43 https://doi.org/10.1016/j.matdes.2013.02.019 10.1016/j.matdes.2013.02.019 Search in Google Scholar

Królicka A, Radwański K, Janik A, Kustroń P, Ambroziak A. Metallurgical characterization of welded joint of nanostructured bainite: regeneration technique versus post welding heat treatment. Materials (Basel). 2020;13(21), 4841. https://doi.org/10.3390/ma13214841 KrólickaA RadwańskiK JanikA KustrońP AmbroziakA Metallurgical characterization of welded joint of nanostructured bainite: regeneration technique versus post welding heat treatment Materials (Basel) 2020 13 21 4841 https://doi.org/10.3390/ma13214841 10.3390/ma13214841766329233138209 Search in Google Scholar

Wang L, Speer JG. Quenching and partitioning steel heat treatment. Metallogr Microstruct Anal. 2013;2:268–81. https://doi.org/10.1007/s13632-013-0082-8 WangL SpeerJG Quenching and partitioning steel heat treatment Metallogr Microstruct Anal 2013 2 268 81 https://doi.org/10.1007/s13632-013-0082-8 10.31399/asm.hb.v04a.a0005800 Search in Google Scholar

Withers PJ, Bhadeshia HKDH. Residual stress part 2 – Nature and origins. Mater Sci Technol. 2001;17:366–75. https://doi.org/10.1179/026708301101510087 WithersPJ BhadeshiaHKDH Residual stress part 2 – Nature and origins Mater Sci Technol 2001 17 366 75 https://doi.org/10.1179/026708301101510087 10.1179/026708301101510087 Search in Google Scholar

Hensel J, Nitschke-Pagel T, Dilger K. On welding residual stresses near fatigue crack tips. Adv Mater Res. 2014;996:801–7. https://doi.org/10.4028/www.scientific.net/AMR.996.801 HenselJ Nitschke-PagelT DilgerK On welding residual stresses near fatigue crack tips Adv Mater Res 2014 996 801 7 https://doi.org/10.4028/www.scientific.net/AMR.996.801 10.4028/www.scientific.net/AMR.996.801 Search in Google Scholar

Nitschke-Pagel T, Wohlfahrt H. Residual stresses in welded joints – sources and consequences. Mater Sci Forum. 2002;404–407:215–26. https://doi.org/10.4028/www.scientific.net/MSF.404-407.215 Nitschke-PagelT WohlfahrtH Residual stresses in welded joints – sources and consequences Mater Sci Forum 2002 404–407 215 26 https://doi.org/10.4028/www.scientific.net/MSF.404-407.215 10.4028/www.scientific.net/MSF.404-407.215 Search in Google Scholar

Zhang K, Dong W, Lu S. Finite element and experiment analysis of welding residual stress in S355J2 steel considering the bainite transformation. J Manuf Process. 2021;62:80–9. https://doi.org/10.1016/j.jmapro.2020.12.029 ZhangK DongW LuS Finite element and experiment analysis of welding residual stress in S355J2 steel considering the bainite transformation J Manuf Process 2021 62 80 9 https://doi.org/10.1016/j.jmapro.2020.12.029 10.1016/j.jmapro.2020.12.029 Search in Google Scholar

Suikkanen PP, Cayron C, DeArdo AJ, Karjalainen LP. Crystallographic analysis of isothermally transformed bainite in 0.2C-2.0Mn-1.5Si-0.6Cr steel using EBSD. J Mater Sci Technol. 2013;29:359–66. https://doi.org/10.1016/j.jmst.2013.01.015 SuikkanenPP CayronC DeArdoAJ KarjalainenLP Crystallographic analysis of isothermally transformed bainite in 0.2C-2.0Mn-1.5Si-0.6Cr steel using EBSD J Mater Sci Technol 2013 29 359 66 https://doi.org/10.1016/j.jmst.2013.01.015 10.1016/j.jmst.2013.01.015 Search in Google Scholar

Caballero FG, Miller MK, Garcia-Mateo C. The approach to equilibrium during tempering of a bulk nanocrystalline steel: an atom probe investigation. J Mater Sci. 2008;43:3769–74. https://doi.org/10.1007/s10853-007-2157-x CaballeroFG MillerMK Garcia-MateoC The approach to equilibrium during tempering of a bulk nanocrystalline steel: an atom probe investigation J Mater Sci 2008 43 3769 74 https://doi.org/10.1007/s10853-007-2157-x 10.1007/s10853-007-2157-x Search in Google Scholar

Królicka A, Ambroziak A, Żak A. Welding capabilities of nanostructured carbide-free bainite: review of welding methods, materials, problems, and perspectives. Appl Sci. 2019;9:3798. https://doi.org/10.3390/app9183798 KrólickaA AmbroziakA ŻakA Welding capabilities of nanostructured carbide-free bainite: review of welding methods, materials, problems, and perspectives Appl Sci 2019 9 3798 https://doi.org/10.3390/app9183798 10.3390/app9183798 Search in Google Scholar

Ruiz-Jimenez V, Kuntz M, Sourmail T, Caballero FG, Jimenez JA, Garcia-Mateo C. Retained austenite destabilization during tempering of low-temperature bainite. Appl Sci. 2020;10:8901. https://doi.org/10.3390/app10248901 Ruiz-JimenezV KuntzM SourmailT CaballeroFG JimenezJA Garcia-MateoC Retained austenite destabilization during tempering of low-temperature bainite Appl Sci 2020 10 8901 https://doi.org/10.3390/app10248901 10.3390/app10248901 Search in Google Scholar

Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH. Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol. 2004;20:814–8. https://doi.org/10.1179/026708304225017355 Garcia-MateoC PeetM CaballeroFG BhadeshiaHKDH Tempering of hard mixture of bainitic ferrite and austenite Mater Sci Technol 2004 20 814 8 https://doi.org/10.1179/026708304225017355 10.1179/026708304225017355 Search in Google Scholar

Sourmail T, Otter L, Collin S, Billet M, Philippot A, Cristofari F, et al. Direct and indirect decomposition of retained austenite in continuously cooled bainitic steels: influence of vanadium. Mater Charact. 2021;173:110922. https://doi.org/10.1016/j.matchar.2021.110922 SourmailT OtterL CollinS BilletM PhilippotA CristofariF Direct and indirect decomposition of retained austenite in continuously cooled bainitic steels: influence of vanadium Mater Charact 2021 173 110922 https://doi.org/10.1016/j.matchar.2021.110922 10.1016/j.matchar.2021.110922 Search in Google Scholar

Fang K, Yang JG, Song KJ, Liu XS, Wang JJ, Fang HY. Study on tempered zone in nanostructured bainitic steel welded joints with regeneration. Sci Technol Weld Join. 2014;19:572–7. https://doi.org/10.1179/1362171814y.0000000227 FangK YangJG SongKJ LiuXS WangJJ FangHY Study on tempered zone in nanostructured bainitic steel welded joints with regeneration Sci Technol Weld Join 2014 19 572 7 https://doi.org/10.1179/1362171814y.0000000227 10.1179/1362171814Y.0000000227 Search in Google Scholar

Saha-Podder A. Tempering of a mixture of bainite and retained austenite. University of Cambridge; 2011. Saha-PodderA Tempering of a mixture of bainite and retained austenite University of Cambridge 2011 Search in Google Scholar

Caballero FG, Miller MK, Clarke AJ, Garcia-Mateo C. Examination of carbon partitioning into austenite during tempering of bainite. Scr Mater. 2010;63:442–5. https://doi.org/10.1016/j.scriptamat.2010.04.049 CaballeroFG MillerMK ClarkeAJ Garcia-MateoC Examination of carbon partitioning into austenite during tempering of bainite Scr Mater 2010 63 442 5 https://doi.org/10.1016/j.scriptamat.2010.04.049 10.1016/j.scriptamat.2010.04.049 Search in Google Scholar

Hulme-Smith CN, Lonardelli I, Peet MJ, Dippel AC, Bhadeshia HKDH. Enhanced thermal stability in nanostructured bainitic steel. Scr Mater. 2013;69:191–4. https://doi.org/10.1016/j.scriptamat.2013.03.029 Hulme-SmithCN LonardelliI PeetMJ DippelAC BhadeshiaHKDH Enhanced thermal stability in nanostructured bainitic steel Scr Mater 2013 69 191 4 https://doi.org/10.1016/j.scriptamat.2013.03.029 10.1016/j.scriptamat.2013.03.029 Search in Google Scholar

Caballero FG, Miller MK, Garcia-Mateo C, Capdevila C, Babu SS. Redistribution of alloying elements during tempering of a nanocrystalline steel. Acta Mater. 2008;56:188–99. https://doi.org/10.1016/j.actamat.2007.09.018 CaballeroFG MillerMK Garcia-MateoC CapdevilaC BabuSS Redistribution of alloying elements during tempering of a nanocrystalline steel Acta Mater 2008 56 188 99 https://doi.org/10.1016/j.actamat.2007.09.018 10.1016/j.actamat.2007.09.018 Search in Google Scholar

Grajcar A, Morawiec M, Różański M, Stano S. Twin-spot laser welding of advanced high-strength multiphase microstructure steel. Opt Laser Technol. 2017;92:52–61. https://doi.org/10.1016/j.optlastec.2017.01.011 GrajcarA MorawiecM RóżańskiM StanoS Twin-spot laser welding of advanced high-strength multiphase microstructure steel Opt Laser Technol 2017 92 52 61 https://doi.org/10.1016/j.optlastec.2017.01.011 10.1016/j.optlastec.2017.01.011 Search in Google Scholar

Królicka A, Żak AM, Caballero FG. Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Mater Des. 2021;211:110143. https://doi.org/10.1016/j.matdes.2021.110143 KrólickaA ŻakAM CaballeroFG Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite Mater Des 2021 211 110143 https://doi.org/10.1016/j.matdes.2021.110143 10.1016/j.matdes.2021.110143 Search in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties