Open Access

The influence of ball milling processing variables on the microstructure and compaction behavior of Fe–Mn–Cu alloys


Cite

Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. https://doi.org/10.1016/S0079-6425(99)00010-9. SuryanarayanaC Mechanical alloying and milling Prog Mater Sci 2001 46 1 184 https://doi.org/10.1016/S0079-6425(99)00010-9. 10.1201/9780203020647 Search in Google Scholar

Koch CC. Intermetallic matrix composites prepared by mechanical alloying – a review. Mater Sci Eng A. 1998;A244:39–48. https://doi.org/10.1016/S0921-5093(97)00824-1. KochCC Intermetallic matrix composites prepared by mechanical alloying – a review Mater Sci Eng A 1998 A244 39 48 https://doi.org/10.1016/S0921-5093(97)00824-1. 10.1016/S0921-5093(97)00824-1 Search in Google Scholar

Bhadeshia HH. Mechanically alloyed metals. J Mater Sci Technol. 2000;1:1404–11. https://doi.org/10.1179/026708300101507361. BhadeshiaHH Mechanically alloyed metals J Mater Sci Technol 2000 1 1404 11 https://doi.org/10.1179/026708300101507361. 10.1179/026708300101507361 Search in Google Scholar

Koch CC, Whittenberger JD. Review: mechanical milling/alloying of Intermetallic. Intermetallics. 1996;4:339–55. https://doi.org/10.1016/0966-9795(96)00001-5. KochCC WhittenbergerJD Review: mechanical milling/alloying of Intermetallic Intermetallics 1996 4 339 55 https://doi.org/10.1016/0966-9795(96)00001-5. 10.1016/0966-9795(96)00001-5 Search in Google Scholar

Shaikh MA, Iqbal M, Akhter JI, Ahmad M, Zaman Q, Akhtar M, et al. Alloying of immiscible Ge with Al by ball milling. Mater Lett. 2003;57:3681–5. https://doi.org/10.1016/S0167-577X(03)00149-6. ShaikhMA IqbalM AkhterJI AhmadM ZamanQ AkhtarM Alloying of immiscible Ge with Al by ball milling Mater Lett 2003 57 3681 5 https://doi.org/10.1016/S0167-577X(03)00149-6. 10.1016/S0167-577X(03)00149-6 Search in Google Scholar

Ma E, Atzmon M. Phase transformations induced by mechanical alloying in a binary system. Mater Chem Phys. 1995;39:249–67. https://doi.org/10.1016/0254-0584(94)01446-N. MaE AtzmonM Phase transformations induced by mechanical alloying in a binary system Mater Chem Phys 1995 39 249 67 https://doi.org/10.1016/0254-0584(94)01446-N. 10.1016/0254-0584(94)01446-N Search in Google Scholar

Romankov S, Sha W, Kaloshkin SD, Kaevitser K. Formation of Ti-Al coatings by mechancial alloying method. Surf Coat Technol. 2006;201:3235–45. https://doi.org/10.1016/j.surfcoat.2006.06.044. RomankovS ShaW KaloshkinSD KaevitserK Formation of Ti-Al coatings by mechancial alloying method Surf Coat Technol 2006 201 3235 45 https://doi.org/10.1016/j.surfcoat.2006.06.044. 10.1016/j.surfcoat.2006.06.044 Search in Google Scholar

Bajakke PA, Malik VR, Saxena KK, Deshpande AS. A novel ultrahigh conductive Al-Cu composite produced via microwave sintering and post- treated by friction stir process. Adv Mater Process Technol. 2021; https://doi.org/10.1080/2374068X.2021.1945270. BajakkePA MalikVR SaxenaKK DeshpandeAS A novel ultrahigh conductive Al-Cu composite produced via microwave sintering and post- treated by friction stir process Adv Mater Process Technol 2021 https://doi.org/10.1080/2374068X.2021.1945270. 10.1080/2374068X.2021.1945270 Search in Google Scholar

El-Eskandarani MS. Mechanical alloying for fabrication of advanced engineering materials. New York, U.S.A: Noyes Publications, William Andrew Publishing; 2001. pp. 22–60. El-EskandaraniMS Mechanical alloying for fabrication of advanced engineering materials New York, U.S.A Noyes Publications, William Andrew Publishing 2001 22 60 10.1016/B978-081551462-6.50004-4 Search in Google Scholar

Gaffet E. Ball milling: an E-v-T parameter phase diagram. Mater Sci Eng A. 1991;135:291–3. https://doi.org/10.1016/0921-5093(91)90578-B. GaffetE Ball milling: an E-v-T parameter phase diagram Mater Sci Eng A 1991 135 291 3 https://doi.org/10.1016/0921-5093(91)90578-B. 10.1016/0921-5093(91)90578-B Search in Google Scholar

Suryanarayana C, Chen GH, Froes FS. Milling maps for phase identification during mechanical alloying. Scripta Metall Mater. 1992;26:1727–32. https://doi.org/10.1016/0956-716X(92)90542-M. SuryanarayanaC ChenGH FroesFS Milling maps for phase identification during mechanical alloying Scripta Metall Mater 1992 26 1727 32 https://doi.org/10.1016/0956-716X(92)90542-M. 10.1016/0956-716X(92)90542-M Search in Google Scholar

Alshataif YA, Sivasankaran S, Al-Mufadi FA, Alaboodi AS, Ammar HR. Synthesis, microstructures and mechanical behaviour of Cr0.21Fe0.20Al0.41Cu0.18 and Cr0.14Fe0.13Al0.26Cu0.11Si0.25Zn0.11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing. Met Mater Int. 2021;27:139–55. https://doi.org/10.1007/s12540-020-00660-6. AlshataifYA SivasankaranS Al-MufadiFA AlaboodiAS AmmarHR Synthesis, microstructures and mechanical behaviour of Cr0.21Fe0.20Al0.41Cu0.18 and Cr0.14Fe0.13Al0.26Cu0.11Si0.25Zn0.11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing Met Mater Int 2021 27 139 55 https://doi.org/10.1007/s12540-020-00660-6. 10.1007/s12540-020-00660-6 Search in Google Scholar

Clinktan R, Senthil V, Ramkumar KR, Sivasankaran S, Al-Mufadi FA. Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram Int. 2019;45:3492–501. https://doi.org/10.1016/j.ceramint.2018.11.007. ClinktanR SenthilV RamkumarKR SivasankaranS Al-MufadiFA Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying Ceram Int 2019 45 3492 501 https://doi.org/10.1016/j.ceramint.2018.11.007. 10.1016/j.ceramint.2018.11.007 Search in Google Scholar

Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater. 2018;7:93–110. https://doi.org/10.1007/s40204-018-0091-4. HermawanH Updates on the research and development of absorbable metals for biomedical applications Prog Biomater 2018 7 93 110 https://doi.org/10.1007/s40204-018-0091-4. 10.1007/s40204-018-0091-4606806129790132 Search in Google Scholar

Mandal S, Ummadi R, Bose M, Balla VK, Roy M. Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties. Mater Lett. 2019;237:323–7. https://doi.org/10.1016/j.matlet.2018.11.117. MandalS UmmadiR BoseM BallaVK RoyM Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties Mater Lett 2019 237 323 7 https://doi.org/10.1016/j.matlet.2018.11.117. 10.1016/j.matlet.2018.11.117 Search in Google Scholar

Ma Z, Gao M, Na D, Li Y, Tan L, Yang K. Study on a biodegradable antibacterial Fe-Mn-C-Cu alloy as urinary implant material. Mater Sci Eng C. 2019;103:109718. https://doi.org/10.1016/j.msec.2019.05.003. MaZ GaoM NaD LiY TanL YangK Study on a biodegradable antibacterial Fe-Mn-C-Cu alloy as urinary implant material Mater Sci Eng C 2019 103 109718. https://doi.org/10.1016/j.msec.2019.05.003. 10.1016/j.msec.2019.05.00331349483 Search in Google Scholar

Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–62. https://doi.org/10.1016/j.biomaterials.2006.05.029. PeusterM HesseC SchlooT FinkC BeerbaumP von SchnakenburgC Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta Biomaterials 2006 27 4955 62 https://doi.org/10.1016/j.biomaterials.2006.05.029. 10.1016/j.biomaterials.2006.05.02916765434 Search in Google Scholar

Ali S, Rani AM, Baig Z, Ahmed SW, Hussain G, Subramaniam K, et al. Biocompatibility and corrosion resistance of metallic biomaterials. Corros Rev. 2020;38:381–402. https://doi.org/10.1515/corrrev-2020-0001. AliS RaniAM BaigZ AhmedSW HussainG SubramaniamK Biocompatibility and corrosion resistance of metallic biomaterials Corros Rev 2020 38 381 402 https://doi.org/10.1515/corrrev-2020-0001. 10.1515/corrrev-2020-0001 Search in Google Scholar

Vojtěch D, Kubasek J, Capek J, Michalcova A, Pospíšilová I. Corrosion and mechanical behavior of biodegradable metallic biomaterials. Solid State Phenom. 2015;227:431–34. https://doi.org/10.4028/www.scientific.net/SSP.227.431. VojtěchD KubasekJ CapekJ MichalcovaA PospíšilováI Corrosion and mechanical behavior of biodegradable metallic biomaterials Solid State Phenom 2015 227 431 34 https://doi.org/10.4028/www.scientific.net/SSP.227.431. 10.4028/www.scientific.net/SSP.227.431 Search in Google Scholar

Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10:3346–53. https://doi.org/10.1016/j.actbio.2014.04.007. KrausT MosznerF FischerauerS FiedlerM MartinelliE EichlerJ Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks Acta Biomater 2014 10 3346 53 https://doi.org/10.1016/j.actbio.2014.04.007. 10.1016/j.actbio.2014.04.00724732635 Search in Google Scholar

Lin W, Qin L, Qi H, Zhang D, Zhang G, Gao R, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 2017;54:454–68. https://doi.org/10.1016/j.actbio.2017.03.020. LinW QinL QiH ZhangD ZhangG GaoR Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold Acta Biomater 2017 54 454 68 https://doi.org/10.1016/j.actbio.2017.03.020. 10.1016/j.actbio.2017.03.02028315492 Search in Google Scholar

Drynda A, Hassel T, Bach FW, Peuster M. In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J Biomed Mater Res Part B. 2015;103:649–60. https://doi.org/10.1002/jbm.b.33234. DryndaA HasselT BachFW PeusterM In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications J Biomed Mater Res Part B 2015 103 649 60 https://doi.org/10.1002/jbm.b.33234. 10.1002/jbm.b.3323424976236 Search in Google Scholar

Dehestani M, Adolfsson E, Stanciu LA. Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications. Mater Des. 2016;109:556–69. https://doi.org/10.1016/j.matdes.2016.07.092. DehestaniM AdolfssonE StanciuLA Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications Mater Des 2016 109 556 69 https://doi.org/10.1016/j.matdes.2016.07.092. 10.1016/j.matdes.2016.07.092 Search in Google Scholar

Schinhammer M, Steiger P, Moszner F, Löffler JF, Uggowitzer PJ. Degradation performance of biodegradable FeMnC (Pd) alloys. Mater Sci Eng C. 2013;33:1882–93. https://doi.org/10.1016/j.msec.2012.10.013. SchinhammerM SteigerP MosznerF LöfflerJF UggowitzerPJ Degradation performance of biodegradable FeMnC (Pd) alloys Mater Sci Eng C 2013 33 1882 93 https://doi.org/10.1016/j.msec.2012.10.013. 10.1016/j.msec.2012.10.01323498209 Search in Google Scholar

Hufenbach J, Wendrock H, Kochta F, Kühn U, Gebert A. Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties. Mater Lett. 2017;186:330–3. https://doi.org/10.1016/J.MATLET.2016.10.037. HufenbachJ WendrockH KochtaF KühnU GebertA Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties Mater Lett 2017 186 330 3 https://doi.org/10.1016/J.MATLET.2016.10.037. 10.1016/j.matlet.2016.10.037 Search in Google Scholar

Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65:540–3. https://doi.org/10.1016/j.matlet.2010.10.068. LiuB ZhengYF RuanL In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material Mater Lett 2011 65 540 3 https://doi.org/10.1016/j.matlet.2010.10.068. 10.1016/j.matlet.2010.10.068 Search in Google Scholar

Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res Part A. 2010;93:1–11. https://doi.org/10.1002/jbm.a.32224. HermawanH DubéD MantovaniD Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents J Biomed Mater Res Part A 2010 93 1 11 https://doi.org/10.1002/jbm.a.32224. 10.1002/jbm.a.3222419437432 Search in Google Scholar

Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–20. https://doi.org/10.1016/j.actbio.2010.11.001. LiuB ZhengYF Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron Acta Biomater 2011 7 1407 20 https://doi.org/10.1016/j.actbio.2010.11.001. 10.1016/j.actbio.2010.11.00121056126 Search in Google Scholar

Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-Barough S, Hermawan H. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater Sci Eng C. 2018;88:88–94. https://doi.org/10.1016/j.msec.2018.03.005. SotoudehbaghaP SheibaniS KhakbizM Ebrahimi-BaroughS HermawanH Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying Mater Sci Eng C 2018 88 88 94 https://doi.org/10.1016/j.msec.2018.03.005. 10.1016/j.msec.2018.03.00529636142 Search in Google Scholar

Safaie N, Khakbiz M, Sheibani S, Bagha PS. Synthesizing of nanostructured Fe-Mn alloys by mechanical alloying process. Procedia Mater Sci. 2015;11:381–5. https://doi.org/10.1016/j.mspro.2015.11.134. SafaieN KhakbizM SheibaniS BaghaPS Synthesizing of nanostructured Fe-Mn alloys by mechanical alloying process Procedia Mater Sci 2015 11 381 5 https://doi.org/10.1016/j.mspro.2015.11.134. 10.1016/j.mspro.2015.11.134 Search in Google Scholar

Bagha PS, Khakbiz M, Safaie N, Sheibani S, Ebrahimi-Barough S. Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35 wt.% Mn alloy. J Alloys Compd. 2018;768:166–75. https://doi.org/10.1016/j.jallcom.2018.07.261. BaghaPS KhakbizM SafaieN SheibaniS Ebrahimi-BaroughS Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35 wt.% Mn alloy J Alloys Compd 2018 768 166 75 https://doi.org/10.1016/j.jallcom.2018.07.261. 10.1016/j.jallcom.2018.07.261 Search in Google Scholar

Sivasankaran S, Sivaprasad K, Narayanasamy R, Iyer VK. An investigation on flowability and compressibility of AA 6061100-x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 2010;201:70–82. https://doi.org/10.1016/j.powtec.2010.03.013. SivasankaranS SivaprasadK NarayanasamyR IyerVK An investigation on flowability and compressibility of AA 6061100-x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying Powder Technol 2010 201 70 82 https://doi.org/10.1016/j.powtec.2010.03.013. 10.1016/j.powtec.2010.03.013 Search in Google Scholar

Sánchez F, Bolarín AM, Molera P, Mendoza JE, Ocampo M. Relationship between particle size and manufacturing processing and sintered characteristics of iron powders. Rev Latinoam Metal Mater. 2003;23:35–40. SánchezF BolarínAM MoleraP MendozaJE OcampoM Relationship between particle size and manufacturing processing and sintered characteristics of iron powders Rev Latinoam Metal Mater 2003 23 35 40 Search in Google Scholar

Ammar HR, Sivasankaran S, Alaboodi AS. Investigation of the microstructure and compressibility of biodegradable Fe–Mn–Cu/W/Co nanostructured alloy powders synthesized by mechanical alloying. Materials. 2021;14:1–23. https://doi.org/10.3390/ma14113088. AmmarHR SivasankaranS AlaboodiAS Investigation of the microstructure and compressibility of biodegradable Fe–Mn–Cu/W/Co nanostructured alloy powders synthesized by mechanical alloying Materials 2021 14 1 23 https://doi.org/10.3390/ma14113088. 10.3390/ma14113088 Search in Google Scholar

Ammar HR, Sivasankaran S, Alaboodi AS, Al-Mufadi FA. Synthesis, microstructural investigation and compaction behavior of Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high entropy alloy. Adv Powder Technol. 2021;32:398–412. https://doi.org/10.1016/j.apt.2020.12.016. AmmarHR SivasankaranS AlaboodiAS Al-MufadiFA Synthesis, microstructural investigation and compaction behavior of Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high entropy alloy Adv Powder Technol 2021 32 398 412 https://doi.org/10.1016/j.apt.2020.12.016. 10.1016/j.apt.2020.12.016 Search in Google Scholar

Ming QY, He LY. Powder-suspension dielectric fluid for EDM. J Mater Process Technol. 1995;52:44–54. https://doi.org/10.1016/0924-0136(94)01442-4. MingQY HeLY Powder-suspension dielectric fluid for EDM J Mater Process Technol 1995 52 44 54 https://doi.org/10.1016/0924-0136(94)01442-4. 10.1016/0924-0136(94)01442-4 Search in Google Scholar

Montgomery DC. Design and analysis of experiments. 4th ed. New York, USA: Wiley; 1997. pp. 65–138. MontgomeryDC Design and analysis of experiments 4th ed. New York, USA Wiley 1997 65 138 Search in Google Scholar

Sivasankaran S, Sivaprasad K, Narayanasamy R, Satyanarayana PV. X-ray peak broadening analysis of AA 6061100−x- x wt.% Al2O3 nanocomposite prepared by mechanical alloying. Mater Charact. 2011;62:661–72. https://doi.org/10.1016/j.matchar.2011.04.017. SivasankaranS SivaprasadK NarayanasamyR SatyanarayanaPV X-ray peak broadening analysis of AA 6061100−x- x wt.% Al2O3 nanocomposite prepared by mechanical alloying Mater Charact 2011 62 661 72 https://doi.org/10.1016/j.matchar.2011.04.017. 10.1016/j.matchar.2011.04.017 Search in Google Scholar

Sivasankaran S. Optimization on dry sliding wear behavior of yellow brass using face centered composite design. AIMS Mater Sci. 2019;6:80–96. https://doi.org/10.3934/matersci.2019.1.80. SivasankaranS Optimization on dry sliding wear behavior of yellow brass using face centered composite design AIMS Mater Sci 2019 6 80 96 https://doi.org/10.3934/matersci.2019.1.80. 10.3934/matersci.2019.1.80 Search in Google Scholar

Sivasankaran S, Ramkumar KR, Al-Mufadi FA, Irfan OM. Effect of TiB2/Gr hybrid reinforcements in Al 7075 matrix on sliding wear behavior analyzed by response surface methodology. Met Mater Int. 2021;27:1739–55. https://doi.org/10.1007/s12540-019-00543-5. SivasankaranS RamkumarKR Al-MufadiFA IrfanOM Effect of TiB2/Gr hybrid reinforcements in Al 7075 matrix on sliding wear behavior analyzed by response surface methodology Met Mater Int 2021 27 1739 55 https://doi.org/10.1007/s12540-019-00543-5. 10.1007/s12540-019-00543-5 Search in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties