Open Access

Synthetic alkaline-earth hydroxyapatites: Influence of their structural, textural, and morphological properties over Co2+ ion adsorption capacity


Cite

Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotox Environ Safe. 2018;148:702–2. BurakovAE GaluninEV BurakovaIV KucherovaAE AgarwalS TkachevAG Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review Ecotox Environ Safe 2018 148 702 2 10.1016/j.ecoenv.2017.11.034 Search in Google Scholar

Vilchis-Granados J, Granados-Correa F, Barrera-Díaz C. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites. Appl Surf Sci. 2013;279:97–2. Vilchis-GranadosJ Granados-CorreaF Barrera-DíazC Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites Appl Surf Sci 2013 279 97 2 10.1016/j.apsusc.2013.04.042 Search in Google Scholar

Rhee S. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 2002;23:1147–2. RheeS Synthesis of hydroxyapatite via mechanochemical treatment Biomaterials 2002 23 1147 2 10.1016/S0142-9612(01)00229-0 Search in Google Scholar

Parhi P, Raman A, Ray AR. Hydrothermal synthesis of nanocrystalline powders of alkaline-earth hydroxyapatites, A10(PO4)6(OH)2 (A=Ca, Sr and Ba). J Mater Sci. 2002;41:1455–8. ParhiP RamanA RayAR Hydrothermal synthesis of nanocrystalline powders of alkaline-earth hydroxyapatites, A10(PO4)6(OH)2 (A=Ca, Sr and Ba) J Mater Sci 2002 41 1455 8 10.1007/s10853-006-7460-4 Search in Google Scholar

Ghosh SK, Datta S, Roy SK. Solution combustion synthesis of calcium hydroxyapatite nanoparticles. Trans Ind Ceram Soc. 2004;63:27–2. GhoshSK DattaS RoySK Solution combustion synthesis of calcium hydroxyapatite nanoparticles Trans Ind Ceram Soc 2004 63 27 2 10.1080/0371750X.2004.11012125 Search in Google Scholar

Wang J, Shaw LL. Synthesis of high purity hydroxyapatite nanopowders via sol-gel combustion process. J Mat Sci. 2009;20:1223–7. WangJ ShawLL Synthesis of high purity hydroxyapatite nanopowders via sol-gel combustion process J Mat Sci 2009 20 1223 7 10.1007/s10856-008-3685-x19132503 Search in Google Scholar

Pham TTT, Nguyen TP, Pham TN, Vu TP, Thai H, Dinh TMT. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method. Adv Nat Sci: Nanosci Nanotechnol. 2013;4:035014. PhamTTT NguyenTP PhamTN VuTP ThaiH DinhTMT Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method Adv Nat Sci: Nanosci Nanotechnol 2013 4 035014 10.1088/2043-6262/4/3/035014 Search in Google Scholar

Byrappa K, Yoshimura M. Handbook of hydrothermal technology – a technology for crystal growth and materials processing. New York: William Andrew Publishing; 2001. ByrappaK YoshimuraM Handbook of hydrothermal technology – a technology for crystal growth and materials processing New York William Andrew Publishing 2001 Search in Google Scholar

Feng Y, Gong JL, Zeng GM, Niu QY, Zhang HY, Niu CG, et al. Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J. 2010;162:487–4. FengY GongJL ZengGM NiuQY ZhangHY NiuCG Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents Chem Eng J 2010 162 487 4 10.1016/j.cej.2010.05.049 Search in Google Scholar

Mobasherpour I, Salahi E, Pazouki M. Removal of nickel (II) from aqueous solutions by nanocrystalline calcium hydroxyapatite. J Saudi Chem Soc. 2011;15:105–2. MobasherpourI SalahiE PazoukiM Removal of nickel (II) from aqueous solutions by nanocrystalline calcium hydroxyapatite J Saudi Chem Soc 2011 15 105 2 10.1016/j.jscs.2010.06.003 Search in Google Scholar

Granados-Correa F, Vilchis-Granados J, Jiménez-Reyes M, Quiroz-Granados LA. Adsorption behavior of La(III) and Eu (III) ions from aqueous solutions by hydroxyapatite: Kinetic, isotherm and thermodynamic studies. J Chem. 2013;1–9:ID. 751696. Granados-CorreaF Vilchis-GranadosJ Jiménez-ReyesM Quiroz-GranadosLA Adsorption behavior of La(III) and Eu (III) ions from aqueous solutions by hydroxyapatite: Kinetic, isotherm and thermodynamic studies J Chem 2013 1 9 ID. 751696. 10.1155/2013/751696 Search in Google Scholar

Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng. 2013;43:125–1. GuptaN KushwahaAK ChattopadhyayaMC Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution J Taiwan Inst Chem Eng 2013 43 125 1 10.1016/j.jtice.2011.07.009 Search in Google Scholar

Li H, Guo X, Ye X. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: the role of surface area. J Environ Sci. 2017;52:141–0. LiH GuoX YeX Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: the role of surface area J Environ Sci 2017 52 141 0 10.1016/j.jes.2016.04.00528254032 Search in Google Scholar

Ma B, Shin WS, Oh S, Park YJ, Choi SJ. Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Sep Sci Technol. 2010;45:453–2. MaB ShinWS OhS ParkYJ ChoiSJ Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles Sep Sci Technol 2010 45 453 2 10.1080/01496390903484941 Search in Google Scholar

Smiciklas I, Dimović S, Plécas I, Mitric M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 2006;40:2267–4. SmiciklasI DimovićS PlécasI MitricM Removal of Co2+ from aqueous solutions by hydroxyapatite Water Res 2006 40 2267 4 10.1016/j.watres.2006.04.03116766010 Search in Google Scholar

Janusz W, Skwarek E. Effect of Co(II) ions adsorption in the hydroxyapatite/aqueous NaClO4 solution system on particles electrokinetics. Physicochem Probl Miner Process. 2018;54:31–9. JanuszW SkwarekE Effect of Co(II) ions adsorption in the hydroxyapatite/aqueous NaClO4 solution system on particles electrokinetics Physicochem Probl Miner Process 2018 54 31 9 Search in Google Scholar

Vahdat, Ghasemi B, Yousefpour M. Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals. Environ Nanotechnol Monit Manag. 2019;12:100233. Vahdat GhasemiB YousefpourM Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals Environ Nanotechnol Monit Manag 2019 12 100233 10.1016/j.enmm.2019.100233 Search in Google Scholar

Hadioui M, Sharrock P, Mecherri MO, Brumas V, Fiallo M. Reaction of lead ions with hydroxylapatite granules. Chem Pap. 2008;62;516–1. HadiouiM SharrockP MecherriMO BrumasV FialloM Reaction of lead ions with hydroxylapatite granules Chem Pap 2008 62 516 1 10.2478/s11696-008-0062-7 Search in Google Scholar

Ghassabzadeh H, Mostaedi MT, Mohaddespour A, Maragheh MG, Ahmari SJ, Zaheri P. Characterizations of Co(II) and Pb(II) removal process from aqueous solutions using expanded perlite. Desalination 2010;261:73–9. GhassabzadehH MostaediMT MohaddespourA MaraghehMG AhmariSJ ZaheriP Characterizations of Co(II) and Pb(II) removal process from aqueous solutions using expanded perlite Desalination 2010 261 73 9 10.1016/j.desal.2010.05.028 Search in Google Scholar

Ibrahim VW. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater. 2011;192:1827–5. IbrahimVW Biosorption of heavy metal ions from aqueous solution by red macroalgae J Hazard Mater 2011 192 1827 5 10.1016/j.jhazmat.2011.07.01921798665 Search in Google Scholar

Kanna S, Goetz-Neunhoeffer F, Neubauer J, Ferreira MF. Ionic substitutions in biphasic hydroxyapatites and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J Am Ceram Soc. 2008;91:1–2. KannaS Goetz-NeunhoefferF NeubauerJ FerreiraMF Ionic substitutions in biphasic hydroxyapatites and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement J Am Ceram Soc 2008 91 1 2 10.1111/j.1551-2916.2007.02117.x Search in Google Scholar

Bouyer E, Gitzhofer F, Boulos MI. Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med. 2000;11:523–1. BouyerE GitzhoferF BoulosMI Morphological study of hydroxyapatite nanocrystal suspension J Mater Sci Mater Med 2000 11 523 1 10.1023/A:1008918110156 Search in Google Scholar

Telep G, Boltz DF. Ultraviolet spectrophotometric determination of cobalt with peroxide and bicarbonate. Anal Chem. 1952;24:945–7. TelepG BoltzDF Ultraviolet spectrophotometric determination of cobalt with peroxide and bicarbonate Anal Chem 1952 24 945 7 10.1021/ac60066a006 Search in Google Scholar

Puigdomenech I. MEDUSA: Make equilibrium diagrams using sophisticated algorithms. 2004. http://www.inorg.kth.se/Research/Ignasi;/Index.html. Accessed 15 Jan 2004. PuigdomenechI MEDUSA: Make equilibrium diagrams using sophisticated algorithms 2004 http://www.inorg.kth.se/Research/Ignasi;/Index.html. Accessed 15 Jan 2004. Search in Google Scholar

Yang H, Masse S, Zhang H, Hélary C, Li L, Coradin T. Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals. J Colloid Interf Sci. 2014;417:1–8. YangH MasseS ZhangH HélaryC LiL CoradinT Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals J Colloid Interf Sci 2014 417 1 8 10.1016/j.jcis.2013.11.031 Search in Google Scholar

Monteil RF, Fedoroff M. Sorption of inorganic species on apatites from aqueous solutions. In: encyclopedia of surface and colloid science. New York: Marcel Dekker; 2002. MonteilRF FedoroffM Sorption of inorganic species on apatites from aqueous solutions In: encyclopedia of surface and colloid science New York Marcel Dekker 2002 Search in Google Scholar

Sugiyama S, Moriga T, Goda M, Hayashi H, Moffat JB. Effects of fine structure changes of strontium hydroxyapatites on ion-exchange properties with divalent cations. J Chem Soc Faraday Trans. 1996;92:4305. SugiyamaS MorigaT GodaM HayashiH MoffatJB Effects of fine structure changes of strontium hydroxyapatites on ion-exchange properties with divalent cations J Chem Soc Faraday Trans 1996 92 4305 10.1039/ft9969204305 Search in Google Scholar

Wells AF. Structural inorganic chemistry. 5th ed. Oxford: Clarendon Press; 1984. WellsAF Structural inorganic chemistry 5th ed. Oxford Clarendon Press 1984 Search in Google Scholar

Moussa S, Lachheb J, Gruselle M, Maaten B, Kriis K, Kanger T, et al. Calcium, barium and strontium apatites: a new generation of catalysts in the Biginelli reaction. Tetrahedron 2017;73:6542–8. MoussaS LachhebJ GruselleM MaatenB KriisK KangerT Calcium, barium and strontium apatites: a new generation of catalysts in the Biginelli reaction Tetrahedron 2017 73 6542 8 10.1016/j.tet.2017.09.051 Search in Google Scholar

Liu C, Huang Y, Shen W, Cui J. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials 2001;22:301–6. LiuC HuangY ShenW CuiJ Kinetics of hydroxyapatite precipitation at pH 10 to 11 Biomaterials 2001 22 301 6 10.1016/S0142-9612(00)00166-6 Search in Google Scholar

Sugiyama S, Nishioka H, Moriga T, Hayashi H, Moffat JB. Ion-exchange properties of strontium hydroxyapatite under acidic conditions. Sep Sci Technol. 1998;33:1999–7. SugiyamaS NishiokaH MorigaT HayashiH MoffatJB Ion-exchange properties of strontium hydroxyapatite under acidic conditions Sep Sci Technol 1998 33 1999 7 10.1080/01496399808545042 Search in Google Scholar

Suryanarayana C, Norton MG. X-ray diffraction. A practical approach. New York: Plenum Press; 1998. SuryanarayanaC NortonMG X-ray diffraction. A practical approach New York Plenum Press 1998 10.1007/978-1-4899-0148-4 Search in Google Scholar

Wang B, Koike N, Iyoki K, Chaikittisilp W, Wang Y, Wakihara, Okubo T. Insights into the ion-exchange properties of Zn(II)-incorporated MOR zeolites for the capture of multivalent cations. Phys Chem Chem Phys. 2019;21:4015–1. WangB KoikeN IyokiK ChaikittisilpW WangY Wakihara OkuboT Insights into the ion-exchange properties of Zn(II)-incorporated MOR zeolites for the capture of multivalent cations Phys Chem Chem Phys 2019 21 4015 1 10.1039/C8CP06975A Search in Google Scholar

Somani V, Kalita J. Synthesis and characterization of nanocrystalline barium strontium titanate powder via sol-gel processing. J Electrochem. 2007;18:57–5. SomaniV KalitaJ Synthesis and characterization of nanocrystalline barium strontium titanate powder via sol-gel processing J Electrochem 2007 18 57 5 10.1007/s10832-007-9008-7 Search in Google Scholar

Drot R, Lindecker C, Fourest B, Simoni E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem. 1998;1:1105–9. DrotR LindeckerC FourestB SimoniE Surface characterization of zirconium and thorium phosphate compounds New J Chem 1998 1 1105 9 10.1039/a803215g Search in Google Scholar

Zhanglei N, Zhidong Ch, Wenju L, Changyan S, Jinghua Z, Yang I. Solvothermal synthesis and optical performance of one-dimensional strontium hydroxyapatite nanorod. Chin J Chem Eng. 2012;20:89–4. ZhangleiN ZhidongCh WenjuL ChangyanS JinghuaZ YangI Solvothermal synthesis and optical performance of one-dimensional strontium hydroxyapatite nanorod Chin J Chem Eng 2012 20 89 4 10.1016/S1004-9541(12)60367-X Search in Google Scholar

Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability powders. Biomaterials 2002;23:1065–2. RaynaudS ChampionE Bernache-AssollantD ThomasP Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability powders Biomaterials 2002 23 1065 2 10.1016/S0142-9612(01)00218-6 Search in Google Scholar

Angelescu A, Ungureeanu D, Catangiu A. Electrode-position of hydroxyapatite coatings in basic conditions. Rev Chim. 2011;62:702–6. AngelescuA UngureeanuD CatangiuA Electrode-position of hydroxyapatite coatings in basic conditions Rev Chim 2011 62 702 6 Search in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties