Open Access

The impact of changes in pore structure on the compressive strength of sulphoaluminate cement concrete at high temperature


Cite

Y. A. Al-Salloum, H. M. Elsanadedy, A. A. Abadel, (2011): Behavior of FRP-confined concrete after high temperature exposure. Construction and Building Materials, 25, 838–850 https://doi.org/10.1016/j.conbuildmat.2010.06.103 Al-SalloumY. A. ElsanadedyH. M. AbadelA. A. 2011 Behavior of FRP-confined concrete after high temperature exposure Construction and Building Materials 25 838 850 https://doi.org/10.1016/j.conbuildmat.2010.06.103 10.1016/j.conbuildmat.2010.06.103 Search in Google Scholar

Q. Ma, R. Guo, Z. Zhao, Z. Lin, K. He, (2015): Mechanical properties of concrete at high temperature–A review. Construction and Building Materials, 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131 MaQ. GuoR. ZhaoZ. LinZ. HeK. 2015 Mechanical properties of concrete at high temperature–A review Construction and Building Materials 371 383 https://doi.org/10.1016/j.conbuildmat.2015.05.131 10.1016/j.conbuildmat.2015.05.131 Search in Google Scholar

J.J.K. Tchekwagep, S. Wang, A.K. Mukhopadhyay, S. Huang, X. Cheng, (2020): Compressive strength of rapid sulfoaluminate cement concrete exposed to elevated temperatures. Ceramics-Silikáty, 299–309. doi.org/10.13168/cs.2020.0019 TchekwagepJ.J.K. WangS. MukhopadhyayA.K. HuangS. ChengX. 2020 Compressive strength of rapid sulfoaluminate cement concrete exposed to elevated temperatures Ceramics-Silikáty 299 309 doi.org/10.13168/cs.2020.0019 10.13168/cs.2020.0019 Search in Google Scholar

R. Kumar, B. Bhattacharjee, (2003): Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 155–164. https://doi.org/10.1016/S0008-8846(02)00942-0 KumarR. BhattacharjeeB. 2003 Porosity, pore size distribution and in situ strength of concrete Cement and Concrete Research 155 164 https://doi.org/10.1016/S0008-8846(02)00942-0 10.1016/S0008-8846(02)00942-0 Search in Google Scholar

Erniati, M. W. Tjaronge, Zulharnah, U.R. Irfan, (2015): Porosity, Pore Size and Compressive Strength of Self Compacting Concrete Using Sea Water. Procedia Engineering, 832–837. https://doi.org/10.1016/j.proeng.2015.11.045 ErniatiM. W. TjarongeZulharnah IrfanU.R. 2015 Porosity, Pore Size and Compressive Strength of Self Compacting Concrete Using Sea Water Procedia Engineering 832 837 https://doi.org/10.1016/j.proeng.2015.11.045 10.1016/j.proeng.2015.11.045 Search in Google Scholar

M. Amadu, M.J. Pegg, (2018): A mathematical determination of the pore size distribution and fractal dimension of a porous sample using spontaneous imbibition dynamics theory. Journal of Petroleum Exploration and Production Technology, 427–435. https://doi.org/10.1007/s13202-018-0477-9 AmaduM. PeggM.J. 2018 A mathematical determination of the pore size distribution and fractal dimension of a porous sample using spontaneous imbibition dynamics theory Journal of Petroleum Exploration and Production Technology 427 435 https://doi.org/10.1007/s13202-018-0477-9 10.1007/s13202-018-0477-9 Search in Google Scholar

Z. Liu, K. Zhao, C. Hu, Y. Tang, (2016): Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete. Advanced in Materials science and engineering, 9520294. https://doi.org/10.1155/2016/9520294 LiuZ. ZhaoK. HuC. TangY. 2016 Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete Advanced in Materials science and engineering 9520294 https://doi.org/10.1155/2016/9520294 10.1155/2016/9520294 Search in Google Scholar

M.L.M. Anovitz, D.R. Cole, (2015): Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 61–164. https://doi.org/10.2138/rmg.2015.80.04 AnovitzM.L.M. ColeD.R. 2015 Characterization and Analysis of Porosity and Pore Structures Reviews in Mineralogy and Geochemistry 61 164 https://doi.org/10.2138/rmg.2015.80.04 10.1515/9781501502071-004 Search in Google Scholar

V. Kodur, (2014): Properties of Concrete at Elevated Temperatures. International. Scholarly Research Notices, 468510. https://doi.org/10.1155/2014/468510 KodurV. 2014 Properties of Concrete at Elevated Temperatures International. Scholarly Research Notices 468510 https://doi.org/10.1155/2014/468510 10.1155/2014/468510 Search in Google Scholar

Eurode 2, EN, 1992-1-2: design of concrete structures. Part 1-2: general rules-structural fire design, European Committee for Standardization, Belgium, 2004. Eurode 2, EN, 1992-1-2: design of concrete structures. Part 1-2: general rules-structural fire design European Committee for Standardization Belgium 2004 Search in Google Scholar

ASCE, Structural fire protection, ASCE committee on fire protection, structural division, American society of civil engineers, New York, USA, 1992 ASCE, Structural fire protection, ASCE committee on fire protection, structural division American society of civil engineers New York, USA 1992 Search in Google Scholar

B.A. du Plessis, B.J. Olawuyi, W.P. Boshoff, S.G. le Roux, (2016): Simple and fast porosity analysis of concrete using X-ray computed tomography. Materials and Structures. 553–562. https://doi.org/10.1617/s11527-014-0519-9 du PlessisB.A. OlawuyiB.J. BoshoffW.P. le RouxS.G. 2016 Simple and fast porosity analysis of concrete using X-ray computed tomography Materials and Structures 553 562 https://doi.org/10.1617/s11527-014-0519-9 10.1617/s11527-014-0519-9 Search in Google Scholar

B. Dong, F. Wang, H. Abadikhah, L. Hao, X. Xu, S.A. Khan, G. Wang, S. Agathopoulos, (2019): Simple Fabrication of Concrete with Remarkable Self-Cleaning Ability, Robust Superhydrophobicity, Tailored Porosity, and Highly Thermal and Sound Insulation. ACS Appl. Mater. Interfaces, 42801–42807. https://doi.org/10.1021/acsami.9b14929 DongB. WangF. AbadikhahH. HaoL. XuX. KhanS.A. WangG. AgathopoulosS. 2019 Simple Fabrication of Concrete with Remarkable Self-Cleaning Ability, Robust Superhydrophobicity, Tailored Porosity, and Highly Thermal and Sound Insulation ACS Appl. Mater. Interfaces 42801 42807 https://doi.org/10.1021/acsami.9b14929 10.1021/acsami.9b14929 Search in Google Scholar

A. E. Mir, S. G Nehme, (2015): Porosity of self-compacting concrete. Procedia Engineering, 145–152. https://doi.org/10.1016/j.proeng.2015.10.071 MirA. E. NehmeS. G 2015 Porosity of self-compacting concrete Procedia Engineering 145 152 https://doi.org/10.1016/j.proeng.2015.10.071 10.1016/j.proeng.2015.10.071 Search in Google Scholar

Y. Pei, F. Agostini, F. Skoczylas, Test code for hydraulic concrete. SL 352-2006 (SL352-2006). China institute of water resources and hydropower, 2006. PeiY. AgostiniF. SkoczylasF. Test code for hydraulic concrete. SL 352-2006 (SL352-2006) China institute of water resources and hydropower 2006 Search in Google Scholar

Q. Chen, B.J. Balcom, (2015): Measurement of rock-core capillary pressure curves using a single-speed centrifuge and one-dimensional magnetic-resonance imaging. AIP Publishing, 214720–214720. https://doi:10.1063/1.1924547 ChenQ. BalcomB.J. 2015 Measurement of rock-core capillary pressure curves using a single-speed centrifuge and one-dimensional magnetic-resonance imaging AIP Publishing 214720 214720 https://doi:10.1063/1.1924547 10.1063/1.1924547 Search in Google Scholar

I.H. Alfahdawi, S.A. Osman, R. Hamid, A.I. AL-Hadithi, (2019): Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures. Construction and Building Materials, 358–370. https://doi.org/10.1016/j.conbuildmat.2019.07.214 AlfahdawiI.H. OsmanS.A. HamidR. AL-HadithiA.I. 2019 Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures Construction and Building Materials 358 370 https://doi.org/10.1016/j.conbuildmat.2019.07.214 10.1016/j.conbuildmat.2019.07.214 Search in Google Scholar

P. Jiang, L. Jiang, J. Zha, Z. Song, (2017): Influence of temperature history on chloride diffusion in high volume fly ash concrete. Construction and Building Materials, 677–685. https://doi.org/10.1016/j.conbuildmat.2017.03.225 JiangP. JiangL. ZhaJ. SongZ. 2017 Influence of temperature history on chloride diffusion in high volume fly ash concrete Construction and Building Materials 677 685 https://doi.org/10.1016/j.conbuildmat.2017.03.225 10.1016/j.conbuildmat.2017.03.225 Search in Google Scholar

D. Gawin, F. Pesavento, B.A. Schrefler, (1927): What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model. International Journal of Solids and Structures, 13. https://doi.org/10.1016/j.ijsolstr.2011.03.004 GawinD. PesaventoF. SchreflerB.A. 1927 What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model International Journal of Solids and Structures 13 https://doi.org/10.1016/j.ijsolstr.2011.03.004 10.1016/j.ijsolstr.2011.03.004 Search in Google Scholar

K.K. Shiller, (1971): Strength of porous materials. Cement and Concrete Research, 419–422. https://doi.org/10.1016/0008-8846(71)90035-4 ShillerK.K. 1971 Strength of porous materials Cement and Concrete Research 419 422 https://doi.org/10.1016/0008-8846(71)90035-4 10.1016/0008-8846(71)90035-4 Search in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties