1. bookVolume 38 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The influence of self-doping of stibnite ore with impurities on the preparation, heat capacity, magnetic and transport properties of tetrahedrite Cu12Sb4S13

Published Online: 12 Dec 2020
Volume & Issue: Volume 38 (2020) - Issue 3 (September 2020)
Page range: 484 - 492
Received: 17 Dec 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Stibnite mineral (mainly Sb2S3) has been employed for the synthesis of tetrahedrite Cu12Sb4S13 bulk material by spark plasma sintering. High purity Cu12Sb4S13 can be quickly obtained by two sintering procedures at temperatures from the range of 420 °C to 440 °C for 1 h. Appropriate reduction of Cu content (Cu12+xSb4S13, x ⩽ –0.05) or CuS content (Cu12−ySb4S13−y, y = 0.1 or 0.3) was beneficial to fabricate Cu12Sb4S13. The secondary resintering improved the purity of Cu12Sb4S13 material. The first-order magnetic phase transformation with magnetic hysteresis effect was confirmed by the behavior of susceptibility, heat capacity and resistivity. The magnetization showed a linear increase with increasing field (up to 7 T) and non-saturation behavior was observed. The impurities in stibnite mineral Sb2S3 had a weak influence on the transformation temperature but affected the low-temperature magnetization value (~0.15, close to natural tetrahedrite). Similar transformation was observed by the analysis of heat capacity. The properties such as electrical resistivity, Seebeck coefficient and thermal conductivity were also measured for Cu11:9Sb4S13 and Cu11:9Sb4S12:9. The maximum figure of merit ZT of Cu11:9Sb4S12:9 was 0.22 at 367 K.

Keywords

[1] Yang M., Su T., Zhu H., Li S., Hu M., Hu Q., Ma H., Jia X., J. Mater. Sci., 53 (2018), 11524.10.1007/s10853-018-2389-ySearch in Google Scholar

[2] Zhu H., Su T., Li H., Pu C., Zhou D., Zhu P., Wang X., J. Eur. Ceram. Soc., 37 (2017), 1541.10.1016/j.jeurceramsoc.2016.10.021Search in Google Scholar

[3] Wang J., Gu M., Bao Y., Li X., Chen L., J. Electron. Mater., 45 (2016), 2274.10.1007/s11664-015-4301-8Search in Google Scholar

[4] Lu X., Morelli D.T., Phys. Chem. Chem. Phys., 15 (2013), 5762.10.1039/c3cp50920fSearch in Google Scholar

[5] May A.F., Delaire O., Niedziela J.L., LaraCurzio E., Susner M.A., Abernathy D.L., Kirkham M., McGuire M.A., Phys. Rev. B, 93 (2016), 064104.10.1103/PhysRevB.93.064104Search in Google Scholar

[6] Lu X., Morelli D.T., Xia Y., Zhou F., Ozolins V., Chi H., Zhou X., Uher C., Adv. Energy Mater., 3 (2013), 342.10.1002/aenm.201200650Search in Google Scholar

[7] Suekuni K., Tsuruta K., Ariga T., Koyano M., Appl. Phys. Express, 5 (2012), 051201.10.1143/APEX.5.051201Search in Google Scholar

[8] Suekuni K., Tsuruta K., Kunii M., Nishiate H., Nishibori E., Maki S., Ohta M., Yamamoto A., Koyano M., J. Appl. Phys., 113 (2013), 043712.10.1063/1.4789389Search in Google Scholar

[9] Lu X., Morelli D., J. Electron. Mater., 43 (2014), 1983.10.1007/s11664-013-2931-2Search in Google Scholar

[10] Heo J., Laurita G., Muir S., Subramanian M.A., Keszler D.A., Chem. Mater., 26 (2014), 2047.10.1021/cm404026kSearch in Google Scholar

[11] Laracurzio E., May A.F., Delaire O., McGuire M.A., Lu X., Liu C.Y., Case E.D., Morelli D.T., J. Appl. Phys., 115 (2014), 193515.10.1063/1.4878676Search in Google Scholar

[12] Di Benedetto F., Bernardini G., Cipriani C., Emiliani C., Gatteschi D., Romanelli M., Phys. Chem. Miner., 32 (2005), 155.10.1007/s00269-005-0449-8Search in Google Scholar

[13] Bouyrie Y., Candolfi C., Ohorodniichuk V., Malaman B., Dauscher A., Tobola J., Lenoir B., J. Mater. Chem. C, 3 (2015), 10476.10.1039/C5TC01636CSearch in Google Scholar

[14] Sun F.H., Wu C.F., Li Z., Pan Y., Asfandiyar, Dong J., Li J.F., RSC Adv., 7 (2017), 18909.10.1039/C7RA02564ESearch in Google Scholar

[15] Levinsky P., Vaney J.-B., Candolfi C., Dauscher A., Lenoir B., Hejtmánek J., J. Electron. Mater., 45 (2016), 1351.10.1007/s11664-015-4032-xSearch in Google Scholar

[16] Lu X., Morelli D.T., MRS Commun., 3 (2013), 129.10.1557/mrc.2013.26Search in Google Scholar

[17] Tippireddy S., Chetty R., Naik M.H., Jain M., Chattopadhyay K., Mallik R.C., J. Phys. Chem. C, 122 (2018), 8735.10.1021/acs.jpcc.7b12214Search in Google Scholar

[18] Suekuni K., Tomizawa Y., Ozaki T., Koyano M., J. Appl. Phys., 115 (2014), 143702.10.1063/1.4871265Search in Google Scholar

[19] Weller D.P., Kunkel G.E., Ochs A.M., Morelli D.T., Anderson M.E., Mater. Today Phys., 7 (2018), 1.10.1016/j.mtphys.2018.10.003Search in Google Scholar

[20] Sobolev A.V., Presniakov I.A., Nasonova D.I., Verchenko V.Y., Shevelkov A.V., J. Phys. Chem. C, 121 (2017), 4548.10.1021/acs.jpcc.6b12779Search in Google Scholar

[21] Bouyrie Y., Sassi S., Candolfi C., Vaney J.-B., Dauscher A., Lenoir B., Dalton T., 45 (2016), 7294.10.1039/C6DT00564KSearch in Google Scholar

[22] Sun F.H., Dong J., Dey S., Wu C.F., Pan Y., Tang H., Li J.F., Sci. China Mater., 9 (2018), 1209.10.1007/s40843-018-9241-xSearch in Google Scholar

[23] Nasonova D.I., Sobolev A.V., Presniakov I.A., Andreeva K.D., Shevelkov A.V., J. Alloy. Compd., 778 (2019), 774.10.1016/j.jallcom.2018.11.168Search in Google Scholar

[24] Huang L.L., Wang Y.S., Zhu C., Xu R., Li J.M., Zhang J.H., Li D., Wang Z.M., Wang L., Song C.J., Xin H.X., Zhang J., Qin X.Y., J. Alloy. Compd., 769 (2018), 478.10.1016/j.jallcom.2018.07.335Search in Google Scholar

[25] Kumar D.P., Chetty R., Femi O., Chattopadhyay K., Malar P., Mallik R., J. Electron. Mater., 46 (2017), 2616.10.1007/s11664-016-4826-5Search in Google Scholar

[26] Suekuni K., Lee C.H., Tanaka H.I., Nishibori E., Nakamura A., Kasai H., Mori H., Usui H., Ochi M., Hasegawa T., Adv. Mater., (2018), 1706230.10.1002/adma.201706230Search in Google Scholar

[27] Lu X., Morelli D.T., Xia Y., Ozolins V., Chem. Mater., 27 (2015), 408.10.1021/cm502570bSearch in Google Scholar

[28] Skinner B.J., Luce F.D., Makovicky E., Econ. Geol. 67 (1972), 924.10.2113/gsecongeo.67.7.924Search in Google Scholar

[29] Welch A.W., Zawadzki P.P., Lany S., Wolden C.A., Zakutayev A., Sol. Energy Mat. Sol. C., 132 (2015), 499.10.1016/j.solmat.2014.09.041Search in Google Scholar

[30] Kitagawa S., Sekiya T., Araki S., Kobayashi T.C., Ishida K., Kambe T., Kimura T., Nishimoto N., Kudo K., Nohara M., J. Phys. Soc. Jpn., 84 (2015), 093701.10.7566/JPSJ.84.093701Search in Google Scholar

[31] Benedetto Di F., Bernardini G.P., Borrini D., Emiliani C., Cipriani C., Danti C., Caneschi A., Gatteschi D., Romanelli M., Can. Mineral., 40 (2002), 837.10.2113/gscanmin.40.3.837Search in Google Scholar

[32] Nasonova D.I., Verchenko V.Y., Tsirlin A.A., Shevelkov A.V., Chem. Mater., 28 (2016), 6621.10.1016/j.jssc.2015.12.015Search in Google Scholar

[33] Lu X., YAO W., Wang G., Zhou X., Morelli D., Zhang Y., Chi H., Hui S., Uher C., J. Mater. Chem. A, 4 (2016), 17096.10.1039/C6TA07015ASearch in Google Scholar

[34] Tanaka H.I., Suekuni K., Umeo K., Nagasaki T., Sato H., Kutluk G., Nishibori E., Kasai H., Takabatake T., J. Phys. Soc. Jpn., 85 (2015), 014703.10.7566/JPSJ.85.014703Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo