1. bookVolume 38 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Subsolidus solution and ionic conductivity of rock-salt structured Li3+5xTa1−xO4 electroceramics

Published Online: 12 Dec 2020
Volume & Issue: Volume 38 (2020) - Issue 3 (September 2020)
Page range: 465 - 474
Received: 29 Nov 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Lithium tantalate solid solution, Li3+5xTa1−xO4 was prepared by conventional solid-state reaction at 925 °C for 48 h. The XRD analysis confirmed that these materials crystallized in a monoclinic symmetry, space group C2/C and Z = 8, which was similar to the reported International Crystal Database (ICDD), No. 98-006-7675. The host structure, β-Li3TaO4 had a rock-salt structure with a cationic order of Li+:Ta5+ = 3:1 over the octahedral sites. A rather narrow subsolidus solution range, i.e. Li3+5xTa1−xO4 (0 ⩽ x ⩽ 0.059) was determined and the formation mechanism was proposed as a replacement of Ta5+ by excessive Li+, i.e. Ta5+ ↔ 5Li+. Both Scherrer and Williamson-Hall (W-H) methods indicated the average crystallite sizes in the range of 31 nm to 51 nm. Two secondary phases, Li4TaO4:5 and LiTaO3 were observed at x = 0.070 and x = −0:013, respectively. These materials were moderate lithium ionic conductors with the highest conductivity of ~2.5 × 10−3 Ω −1 ˙ cm−1 at x = 0, at 0 °C and 850 °C; the activation energies were found in the range of 0.63 eV to 0.68 eV.

Keywords

[1] Janot R., Guérard D., Prog. Mater. Sci., 50, (2005), 1.Search in Google Scholar

[2] Thangadurai V., Weppner W., Ionics, 8, (2002), 281.10.1007/BF02376081Search in Google Scholar

[3] El-Metwaly F.G., Abou-Sekkina M.M., Saad F.A., Khedr A.M., Mater. Sci.-Poland, 4, (2014), 571.10.2478/s13536-014-0236-7Search in Google Scholar

[4] Zainuddin L.W., Kamarulzaman N., Adv. Mater. Res., 545, (2012), 275.10.4028/www.scientific.net/AMR.545.275Search in Google Scholar

[5] Biswas S.P., Tangri R.P., Prasad R., Suri A.K., T. Indian Ceram. Soc., 59, (2000), 88.10.1080/0371750X.2000.10799940Search in Google Scholar

[6] Blasse G., Z. Anorg. Allg. Chem., 331, (1964), 44.10.1002/zaac.19643310108Search in Google Scholar

[7] Zhou D., Wang H., Pang L-X., Yao X., Wu X-G., Am. Ceram. Soc. Bull., 91, (2008), 4115.10.1111/j.1551-2916.2008.02764.xSearch in Google Scholar

[8] Boulay D., Sakaguchi D.A., Ishizawa K., Sud A., Nobu O., Acta Crystallogr. C, 59, (2003), 80.10.1107/S1600536803009061Search in Google Scholar

[9] Zocchi M., Gatti M., J. Solid State Chem., 48, (1983), 420.10.1016/0022-4596(83)90101-9Search in Google Scholar

[10] Zocchi M., Gatti M., Santoro A., Roth R.S., J. Solid State Chem., 53, (1984), 277.10.1016/0022-4596(84)90103-8Search in Google Scholar

[11] Martel L.C., Roth R.S., Am. Ceram. Soc. Bull., 60, (1981), 376.Search in Google Scholar

[12] Deqiong Z., Shuming P., Xiaojun C., Xialing G., Tongzai, J. Nucl. Mater., 396, (2010), 245.Search in Google Scholar

[13] Glass A.M., Nassau K., Negran T.J., J. Appl. Phys., 49, (1978), 4808.10.1063/1.325509Search in Google Scholar

[14] Miao C.R., Torardi C.C., J. Solid State Chem., 145, (1999), 110.10.1006/jssc.1999.8229Search in Google Scholar

[15] West A.R., Solid State Chemistry and It Applications, John Wiley & Sons, Ltd, New Jersey, 1999.Search in Google Scholar

[16] Yogamalar R., Mahendran V., Srinivasan R., Beitollahi A., Kumar R.P., Bose A.C., Vinu A., Chem. Asian J., 5, (2010), 2379.10.1002/asia.201000358Search in Google Scholar

[17] Khanfekr A., Tamizifar M., Naghizadeh R., Mater. Sci.-Poland., 32, (2014), 430.10.2478/s13536-014-0222-0Search in Google Scholar

[18] Chon M.P., Tan K.B., Khaw C.C., Zainal Z., Yap Y.H.T., Chen S.K., Tan P.Y., J. Alloy. Compd., 590, (2014), 479.10.1016/j.jallcom.2013.11.028Search in Google Scholar

[19] Wachs E.I., Briand L.E., Jehng J-M., Burcham L., Gao X., Catal. Today., 57, (2000), 323.10.1016/S0920-5861(99)00343-0Search in Google Scholar

[20] Zhang J-Y., Fang Q., Boyd I.W., Appl. Surf. Sci., 138, (1999), 320.10.1016/S0169-4332(98)00413-9Search in Google Scholar

[21] Ono H., Hosokawa Y., Shinoda K., Koyanagi K., Yamaguchi H., Thin Solid Films., (2001), 57.10.1016/S0040-6090(00)01550-9Search in Google Scholar

[22] Jie Z., Dongxu L., Wei D., Zeyan W., Peng W., Hefeng C., Baibiao H., Minhua J., J. Cryst. Growth., 318, (2011), 1121.Search in Google Scholar

[23] Kashif. I., Soliman A.A., Sakr E.M., Ratep A., Spectrochim Acta A, 113, (2013), 15.10.1016/j.saa.2013.04.08423708372Search in Google Scholar

[24] Bak K.Y., TAN K.B., Khaw C.C., Zainal Z., Tan P.Y., Chon M.P., Sains Malays., 43, (2014), 1573.Search in Google Scholar

[25] Irvine J.T.S., Sinclair D.C., West A.R., Adv. Mater., 2, (1990), 132.10.1002/adma.19900020304Search in Google Scholar

[26] McLaren V.L., Kirk C.A., Poisot M., Castellanos M., West A.R., Dalton T., 19, (2004), 3042.10.1039/b316396m15452628Search in Google Scholar

[27] Sinclair, D.C., Bol. Soc. Esp. Cerám. V., 34, (1995), 55.Search in Google Scholar

[28] Ziman, J.M., Electrons and phonons. Oxford University Press, London, 1960.Search in Google Scholar

[29] Dash U., Sahoo S., Parashar S.K.S., Chaudhuri P., J. Adv. Ceram., 3, (2014), 98.10.1007/s40145-014-0098-9Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo