1. bookVolume 38 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Thin films of copper phthalocyanine deposited by solution processing methods

Published Online: 08 May 2020
Volume & Issue: Volume 38 (2020) - Issue 1 (March 2020)
Page range: 79 - 90
Received: 14 Jun 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this work, we show and discuss the surface structure picture of copper phthalocyanine (CuPc) thin films deposited from trifluoroacetic acid (TFA) solvent onto silicon substrates at ambient conditions by four solution processing methods, namely drop-casting, dip-coating, spin-casting and spray-coating. The CuPc films were studied by AFM, as the main technique, and complemented by micro-Raman spectroscopy. Essentially, such thin films consist of CuPc molecular nanoribbons of a fixed ~1 nm thickness. CuPc molecules are arranged in an in-plane direction and formed in stacks under a defined tilt angle with respect to the substrate surface (monolayer) or underlying CuPc layer (multilayer). The film morphology takes various forms depending on the solution concentration, number of layers, and the deposition method. For instance, the morphology varies from very wide (~600 nm) but flat (~1 nm) ribbons for films prepared by dip-coating to crystallized rod-like features (multi-layered ribbons) when obtained by spray-coating. The factors studied in this paper should be taken into consideration in designing and controlling the criteria for rigorous CuPc film architecture.

Keywords

[1] Swalen J.D., Allara D.L., Andrade J.D., Chandross E.A., Garoff S., Israelachvili J., McCarthy T.J., Murray R., Pease R.F., Rabolt J.F., Wynne K.J., Yu H., Langmuir, 3 (1987), 932.10.1021/la00078a011Search in Google Scholar

[2] Seshan K., Handbook of Thin Film Deposition: Techniques, Processes, and Technologies, 3rd Ed., Elsevier, 2012.Search in Google Scholar

[3] Martin P.M. (Ed.), Handbook of Deposition Technologies for Films and Coatings, Elsevier, 2010.Search in Google Scholar

[4] Mitzi D.B. (Ed.), Solution Processing of Inorganic Materials, Wiley, 2008.10.1002/9780470407790Search in Google Scholar

[5] Yang Y., Li G. (Ed.), Progress in High-Efficient Solution Process Organic Photovoltaic Devices: Fundamentals, Materials, Devices and Fabrication, Springer, 2015.10.1007/978-3-662-45509-8Search in Google Scholar

[6] Gojzewski H., Makowski M., Hashim A., Kopcansky P., Tomori Z., Timko M., Scanning, 34 (2012), 159.10.1002/sca.2029221953296Search in Google Scholar

[7] Morrin A., Wilbeer F., Ngamna O., Moulton S.E., Killard A.J., Wallace G.G., Smyth M.R., Electrochem. Commun., 7 (2005), 317.10.1016/j.elecom.2005.01.014Search in Google Scholar

[8] Choi H., Stathatos E., Dionysiou D.D., Appl. Catal. B, 63 (2006), 60.10.1016/j.apcatb.2005.09.012Search in Google Scholar

[9] Caldeira L., Vasconcelos D.C.L., Nunes E.H.M., Costa V.C., Musse A.P., Hatimondi S.A., Nascimento J.F., Grava W., Vasconcelos W.L., Ceram. Int., 38 (2012), 3251.10.1016/j.ceramint.2011.12.031Search in Google Scholar

[10] Bormashenko E., Pogreb R., Stanevsky O., Bormashenko Y., Stein T., Gaisin V.Z., Cohen R., Gendelman O.V., Macromol. Mater. Eng., 290 (2005), 114.10.1002/mame.200400217Search in Google Scholar

[11] Chang D., Yoon D., Ro M., Hwang I., Park I., Shin D., Jpn. J. Appl. Phys., 42 (2003), 754.10.1143/JJAP.42.754Search in Google Scholar

[12] Lindgren L.J., Zhang F., Andersson M., Barrau S., Hellstrom S., Mammon W., Perzpn E., Inganaes O., Andersson M.R., Chem. Mater., 21 (2009), 3491.10.1021/cm802949gSearch in Google Scholar

[13] Nohria R., Khillan R.K., Su Y., Dikshit R., Lvov Y., Varahramyan K., Sensor. Actuator. B, 114 (2006), 218.10.1016/j.snb.2005.04.034Search in Google Scholar

[14] Sirringhaus H., Adv. Mater., 17 (2005), 2411.10.1002/adma.200501152Search in Google Scholar

[15] Chang J.F., Sun B., Breiby D.W., Nielsen M.M., Soelling T.I., Giles M., McCulloch I., Sirringhaus H., Chem. Mater., 16 (2004), 4772.10.1021/cm049617wSearch in Google Scholar

[16] Shi Y., Liu J., Yang Y., J. Appl. Phys., 87 (2000), 4254.10.1063/1.373062Search in Google Scholar

[17] Pu Y.J., Higashidate M., Nakayama K.I., Kido J., J. Mater. Chem., 18 (2008), 4183.10.1039/b806160bSearch in Google Scholar

[18] Kobayashi H., Kanbe S., Seki S., Kigchi H., Kimura M., Yudasaka I., Miyashita S., Shimoda T., Towns C.R., Burroughes J.H., Friend R.H., Synth. Met., 111 (2000), 125.10.1016/S0379-6779(99)00322-7Search in Google Scholar

[19] Gray J.E., Luan B., J. Alloy. Compd., 336 (2002), 88.10.1016/S0925-8388(01)01899-0Search in Google Scholar

[20] Wu W., Wang X., Liu X., Zhou F., ACS Appl. Mater. Int., 1 (2009), 1656.10.1021/am900136k20355780Search in Google Scholar

[21] Krogman K.C., Lowery J.L., Zacharia N.S., Rutledge G.C., Hammond P.T., Nature Mater., 8 (2009), 512.10.1038/nmat243019377464Search in Google Scholar

[22] Men X., Zhang Z., Yang J., Zhu X., Wang K., Jiang W., New J. Chem., 35 (2011), 881.10.1039/c0nj00954gSearch in Google Scholar

[23] Jafari S.M., Assadpoor E., Bhandari B., He Y., Food Res. Int., 41 (2008), 172.10.1016/j.foodres.2007.11.002Search in Google Scholar

[24] Alamilla-Beltran L., Chanona-Perez J.J., Jimenez-Aparicio A.R., Gutierez-Lopez G.F., J. Food Eng., 67 (2005), 179.10.1016/j.jfoodeng.2004.05.063Search in Google Scholar

[25] Girotto C., Rand B.P., Genoe J., Heremans P., Sol. Energ. Mat. Sol. C., 93 (2009), 454.10.1016/j.solmat.2008.11.052Search in Google Scholar

[26] Wolz A., Zils S., Michel M., Roth C., J. Power Sources, 195 (2010), 8162.10.1016/j.jpowsour.2010.06.087Search in Google Scholar

[27] Rajeshmon V.G., Kartha C.S., Vijayakumar K.P., Sanjeeviraja C., Abe T., Kashiwaba Y., Sol. Energ., 85 (2011), 249.10.1016/j.solener.2010.12.005Search in Google Scholar

[28] Kadish K.M., Smith K.M., Gillard R. (Ed.), The Porphyrin Handbook, Academic Press, San Diego, 2000.Search in Google Scholar

[29] Yang F., Forrest S.R., ACS Nano, 2 (2008), 1022.10.1021/nn700447t19206500Search in Google Scholar

[30] Huang Y.S., Jou J.H., Weng W.K., Liu J.M., Appl. Phys. Lett., 80 (2002), 2782.10.1063/1.1413220Search in Google Scholar

[31] Ye R., Baba M., Oishi Y., Mori K., Suzuki K., Appl. Phys. Lett., 86 (2005), 1.10.1063/1.1949731Search in Google Scholar

[32] Inabe T., Tajima H., Chem. Rev., 104 (2004), 5503.10.1021/cr030649x15535658Search in Google Scholar

[33] Peumans P., Forrest S.R., Appl. Phys. Lett., 79 (2001), 126.10.1063/1.1384001Search in Google Scholar

[34] Tang Q., Li H., He M., Hu W., Liu C., Chen K., Wang C., Liu Y., Zhu D., Adv. Mater., 18 (2006), 65.10.1002/adma.200501654Search in Google Scholar

[35] Kumawat L.K., Mergu N., Singh A.K., Gupta V.K., Sensor. Actuator. B, 212 (2015), 389.10.1016/j.snb.2015.02.027Search in Google Scholar

[36] Gomez de Arco L., Zhang Y., Schlenker C.W., Ryu K., Thompson M.E., Zhou C., ACS Nano, 4 (2010), 2865.10.1021/nn901587x20394355Search in Google Scholar

[37] Jha A., Ghorai U.K., Banerjee D., Mukherjee S., Chattopadhyay K.K., RSC Adv., 3 (2013), 1227.10.1039/C2RA21776GSearch in Google Scholar

[38] Chunder A., Pal T., Khondaker S.I., Zhai L., J. Phys. Chem. C, 114 (2010), 15129.10.1021/jp104587nSearch in Google Scholar

[39] Szybowicz M., Bala W., Fabisiak K., Paprocki K., Drozdowski M., J. Mater. Sci., 46 (2011), 6589.10.1007/s10853-011-5607-4Search in Google Scholar

[40] Szybowicz M., Runka T., Drozdowski M., Bala W., Grodzicki A., Piszczek P., Bratkowski A., J. Mol. Struct., 704 (2004), 107.10.1016/j.molstruc.2004.01.053Search in Google Scholar

[41] Huang H., Chen W., Chen S., Qi D.C., Gao X.Y., Wee A.T.S., Appl. Phys. Lett., 94 (2009), 163304.10.1063/1.3122940Search in Google Scholar

[42] Bobisch C., Wagner T., Bannani A., Moeller R., J. Chem. Phys., 119 (2003), 9804.10.1063/1.1615492Search in Google Scholar

[43] Komino T., Matsuda M., Tajima H., Thin Solid Films, 518 (2009), 688.10.1016/j.tsf.2009.07.063Search in Google Scholar

[44] Ghani F., Bochukov I., Fostiropoulos K., Riegler H., Thin Solid Films, 525 (2012), 177.10.1016/j.tsf.2012.10.045Search in Google Scholar

[45] Ghani F., Gojzewski H., Riegler H., Appl. Surf. Sci., 351 (2015), 969.10.1016/j.apsusc.2015.06.020Search in Google Scholar

[46] Afify H.A., Gadallah A.S., El-Nahass M.M., Atta Khedr M., J. Mol. Struct., 1098 (2015), 161.10.1016/j.molstruc.2015.06.016Search in Google Scholar

[47] Lin W.K., Su S.H., Liu C.C., Yokoyama M., Jpn. J. Appl. Phys., 53 (2014), 11RB04.10.7567/JJAP.53.11RB04Search in Google Scholar

[48] Ghani F., Kristen J., Riegler H., J. Chem. Eng. Data, 57 (2012), 439.10.1021/je2010215Search in Google Scholar

[49] Grosso D., J. Mater. Chem., 21 (2011), 17033.10.1039/c1jm12837jSearch in Google Scholar

[50] Dobre M., Bolle L., Exp. Therm. Fluid Sci., 26 (2002), 205.10.1016/S0894-1777(02)00128-0Search in Google Scholar

[51] Gojzewski H., Richter A., Wrobel D., Apostoluk A., Siejak P., Raimond P., Surf. Sci., 603 (2009), 237.10.1016/j.susc.2008.11.009Search in Google Scholar

[52] Szybowicz M., Bala W., Duemecke S., Fabisiak K., Paprocki K., Drozdowski M., Thin Solid Films, 520 (2011), 623.10.1016/j.tsf.2011.07.051Search in Google Scholar

[53] Hoshino A., Takenaka Y., Miyaji H., Acta Cryst. B, 59 (2003), 393.10.1107/S010876810300942X12761409Search in Google Scholar

[54] Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A., Nature, 389 (1997), 827.10.1038/39827Search in Google Scholar

[55] Ghani F., Max Planck Institute of Colloid and Interfaces, Potsdam, 2012.Search in Google Scholar

[56] Brinker C.J., Frye G.C., Hurd A.J., Ashley C.S., Thin Solid Films, 201 (1991), 97.10.1016/0040-6090(91)90158-TSearch in Google Scholar

[57] Guenes S., Neugebauer H., Sariciftci N.S., Chem. Rev., 107 (2007), 1324.10.1021/cr050149z17428026Search in Google Scholar

[58] Brabec C.J., Durrant J.R., MRS Bull., 33 (2008), 670.10.1557/mrs2008.138Search in Google Scholar

[59] Sullivan P., Jones T.S., Ferguson A.J., Heutz S., Appl. Phys. Lett., 91 (2007), 233114.10.1063/1.2821229Search in Google Scholar

[60] Rand B.P., Cheyns D., Vasseur K., Giebink N.C., Mothy S., Yi Y., Coropceanu V., Beljonne D., Cornil J., Brédas J.L., Genoe J., Adv. Funct. Mater., 22 (2012), 2987.10.1002/adfm.201200512Search in Google Scholar

[61] Chen T.L., Chen J.J.A., Catane L., Ma B., Org. Electron., 12 (2011), 1126.10.1016/j.orgel.2011.03.039Search in Google Scholar

[62] Schubert D.W., Dunkel T., Mater. Res. Innov., 7 (2003), 314.10.1007/s10019-003-0270-2Search in Google Scholar

[63] Karpitschka S., Weber C.M., Riegler H., Chem. Eng. Sci., 129 (2015), 243.10.1016/j.ces.2015.01.028Search in Google Scholar

[64] Mokarian-Tabari P., Geoghegan M., Howse J.R., Heriot S.Y., Thompson R.L., Jones R.A.L., Eur. Phys. J. E, 33 (2010), 283.10.1140/epje/i2010-10670-721086015Search in Google Scholar

[65] Gaffo L., Cordeiro M.R., Freitas A.R., Moreira W.C., Girotto E.M., Zucolotto V., J. Mater. Sci., 45 (2010), 1366.10.1007/s10853-009-4094-3Search in Google Scholar

[66] Tackley D.R., Dent G., Smith W.E., Phys. Chem. Chem. Phys., 3 (2001), 1419.10.1039/b007763lSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo