Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
access type Open Access

Studies on new material: carbon dot-graphene oxide-zinc oxide nanocomplex

Published Online: 30 Dec 2019
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 12 Oct 2016
Accepted: 23 Apr 2019
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

In the present work, with an aim of developing new useful materials, carbon dot-graphene oxide-zinc oxide (CGZ) nanocomplexes were synthesized by the wet chemical method. Structure, morphology and chemical composition of prepared GCZ nanoparticles were determined by carrying out X-ray diffraction, scanning electron microscopy, Fourier transform infrared and energy dispersive X-ray absorption spectral measurements. The strong absorption band observed in the UV region for the prepared samples can be attributed to the band edge absorption. The dielectric parameters, viz. dielectric constant (∈r), dielectric loss (tanδ) and AC electrical conductivity (σ AC) were determined at various temperatures in the range of 30 °C to 150 °C at two different frequencies (100 Hz and 1 kHz). DC conductivity (σDC) measurement was also carried out at various temperatures in the range of 30 °C to 150 °C. In addition, the enhanced photocatalytic activity of CGZ has been explained and the mechanism elucidating the excellent performance of CGZ has been proposed.


[1] Hanm Y., Ozyilmaz B., Zhang Y., Kim P., Phys. Rev. Lett., 98 (2007), 206805.10.1103/PhysRevLett.98.206805Search in Google Scholar

[2] Bolotin K.I., Sikes K., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H., Solid State Commun., 146 (2008), 351.10.1016/j.ssc.2008.02.024Search in Google Scholar

[3] Lee C., Wei X., Kysar J.W., Hone J., Science, 321 (2008), 385.10.1126/science.115799618635798Search in Google Scholar

[4] Eda G., Lin Y.-Y., Miller S., Chen C.-W., Su W.-F., Chhowalla M., Appl. Phys. Lett., 92 (2008), 233305.10.1063/1.2937846Search in Google Scholar

[5] Kymakis E., Stratakis E., Stylianakis M., Koudoumas E., Fotakis C., Thin Solid Films, 520 (2011), 1238.10.1016/j.tsf.2011.04.208Search in Google Scholar

[6] Kymkis E., Savva K., Stylianakis M.M., Fotakis C., Stratakis E., Adv. Funct. Mater., 23 (21) (2013), 2742.10.1002/adfm.201202713Search in Google Scholar

[7] Wu J., Becerril H.A., Bao Z., Liu Z., Chen Y., Peumans P., Appl. Phys. Lett., 92 (2008), 263302.10.1063/1.2924771Search in Google Scholar

[8] Pang S., Tsao H.N., Feng X., Mullen K., Adv. Mater., 21 (2009), 3488.10.1002/adma.200803812Search in Google Scholar

[9] Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.B.T., Ruoff R.S., Nature, 442 (2006), 282.10.1038/nature0496916855586Search in Google Scholar

[10] Hong G., Robinson J.T., Zhang Y., Diao S., Antaris A.L., Wang Q., Dai H., Angew. Chem., 124 (39) (2012), 9956.10.1002/ange.201206059Search in Google Scholar

[11] Zhao Y., Riemersma C., Pietra F., Koole R., Mello de Donegá C., Meijerink A., ACS Nano, 6 (10) (2012), 9058.10.1021/nn303217q22978378Search in Google Scholar

[12] Zhuo S., Shao M., Lee S.T., ACS Nano, 6 (2) (2012), 1059.10.1021/nn204039522221037Search in Google Scholar

[13] Song W.S., Yang H., Chem. Mater., 24 (10) (2012), 1961.10.1021/cm300837zSearch in Google Scholar

[14] Lightcap I.V., Kamat P.V., J. Am. Chem. Soc., 134 (16) (2012), 7109.10.1021/ja301292922458366Search in Google Scholar

[15] Haitao Li, Xiaodie He, Zhenhui Kang, Hui Huang, Yang Liu, Jinglin Liu, Suoyuan Lian, Chi Him A., Tsang, Xiaobao Yang, Shuit-Tong Lee, Angew. Chem. Int. Ed., 49 (26) (2010), 4430.10.1002/anie.20090615420461744Search in Google Scholar

[16] Haitao Li, Xiaodie He, Yang Liu, Hui Huang, Suoyuan Lian, Shuit-Tong Lee, Zhenhui Kang, Carbon, 49 (2) (2011), 605.10.1016/j.carbon.2010.10.004Search in Google Scholar

[17] Haitao Li, Zhenhui Kang, Yang Liu, ShuitTong Lee, J. Mater. Chem., 22 (46) (2012), 24230.10.1039/c2jm34690gSearch in Google Scholar

[18] Baker S N., Baker G A., Angew. Chemie Int. Ed., 49 (38) (2010), 6726.10.1002/anie.20090662320687055Search in Google Scholar

[19] Jia X., Li J., Wang E., Nanoscale, 4 (18) (2012), 5572.10.1039/c2nr31319g22786671Search in Google Scholar

[20] Yan-Min Long, Chuan-Hua Zhou, Zhi-Ling Zhang, Zhi-Quan Tian, Lei Bao, Yi Lin, DaiWen Pang, J. Mater. Chem., 22(13) (2012), 5917.10.1039/c2jm30639eSearch in Google Scholar

[21] MING H., MA Z., LIU Y., PAN K., YU H., WANG F., KANG Z., Dalton Trans., 41 (31) (2012), 9526.10.1039/c2dt30985h22751568Search in Google Scholar

[22] Li H., Ming H., Liu Y., Yu H., He X., Huang H., Pan K., Kang Z., Lee S.T., New J. Chem., 35 (11) (2011), 2666.10.1039/c1nj20575gSearch in Google Scholar

[23] Liu H., Ye T., Mao C., Angew. Chem. Int. Ed., 46 (34) (2007), 6473.10.1002/anie.20070127117645271Search in Google Scholar

[24] Liu S., Tian J., Wang L., Luo Y., Sun X., RSC Adv., 2 (2) (2011), 411.10.1039/C1RA00709BSearch in Google Scholar

[25] Cao L., Wang X., Meziani M.J., Lu F., Wang H., Luo P.G., Lin Y., Harruff B.A., Veca M.L., Murray D., Xie S.-Y., Sun Y.-P., J. Am. Chem. Soc., 129 (37) (2007), 11318.10.1021/ja073527l269141417722926Search in Google Scholar

[26] Sahu S., Behera B., Maiti T. K., Mohapatra S., Chem. Comm., 48 (70) (2012), 8835.10.1039/c2cc33796g22836910Search in Google Scholar

[27] Ma Z., Ming H., Huang H., Liu Y., Kang Z., New J. Chem., 36 (4) (2012), 861.10.1039/c2nj20942jSearch in Google Scholar

[28] Wang J., Wang C.F., Chen S., Angew. Chem., 124 (37) (2012), 9431.10.1002/ange.201204381Search in Google Scholar

[29] Ozgur U., Alivov Ya I., Liu C., Teke A., Reshchikov A.M., Dogan S., Avrutin V., Cho S.- J., Morkoc H., J. Appl. Phys., 98 (4) (2005), 041301.10.1063/1.1992666Search in Google Scholar

[30] Tiwari P., Srivastava H., Srivastavs A.K., Deb S.K., J. Alloy. Compd., 611 (2014), 111.10.1016/j.jallcom.2014.05.057Search in Google Scholar

[31] Nam G.-H., Seong-Hobaek S.-H., Park I.-K., J. Alloy. Compd., 613 (2014), 37.10.1016/j.jallcom.2014.05.110Search in Google Scholar

[32] Wei C., Cheng C., Zhou B., Yuan X., Cui T., Wang S., Zheng M., Pang H., Part. Syst. Charact., 32 (2015), 831.10.1002/ppsc.201500018Search in Google Scholar

[33] Wei C., Cheng C., Wang S., Xu Y., Wang J., Pang H., Chem. Asian J., 71 (2015),101731.Search in Google Scholar

[34] Hanada T., Advanced Materials Research, in: Yao T., Hong S.K. (Ed.), Oxide and Nitrite Semiconductors, Springer, Berlin Heidelberg, 2009, p. 1.Search in Google Scholar

[35] Liang Y., Wu D., Feng X., Mullen K., Adv. Mater., 21 (2009), 1679.10.1002/adma.200803160Search in Google Scholar

[36] Shen J., Hu Y., Shi M., Li N., Ma H., Ye M., J. Phys. Chem. C, 114 (2010), 1498.10.1021/jp909756rSearch in Google Scholar

[37] Khenfouch M., Baitoul M., Maaza M., Opt. Mater., 34 (2012), 1320.10.1016/j.optmat.2012.02.005Search in Google Scholar

[38] Zhu C., Guo S., Wang P., Xing L., Fang Y., Zhai Y., Dong S., Chem. Commun., 46 (2010), 7148.10.1039/c0cc01459a20657904Search in Google Scholar

[39] Min Q., Zhang X., Zhang H., Zhou F., Zhu J.J., Chem. Commun., 28 (2011), 9136.Search in Google Scholar

[40] Li H.T., Kang Z.H., Liu Y., Lee S.T., Mater. J. Chem., 22 (46) (2012), 24230.10.1039/c2jm34690gSearch in Google Scholar

[41] Mu J.B., Shao C.L., Guo Z.C., Zhang Z.Y., Zhang M.Y., Zhang P., Chen B., Liu Y.C., ACS Appl. Mater. Interfaces, 3 (2) (2011), 590.10.1021/am101171a21291208Search in Google Scholar

[42] Kim C.H., Kim B.H., Yng K.S., Carbon, 316 50 (7) (2012),2472.10.1016/j.carbon.2012.01.069Search in Google Scholar

[43] Wang X., Cao L., Lu F.S., Meziani M.J., Li H.T., Qi G., Zhou B., Harruff B.A., Kermarrec F., Sun Y.P., Chem. Commun. (Camb)., 25 (25) (2009), 3774.10.1039/b906252a276738219557278Search in Google Scholar

[44] Guo G., Guo J., Tao D., Choy W.C.H., Zhao L., Qian W., Wang Z., Appl. Phys. A Mater., 89 (2007), 525.10.1007/s00339-007-4098-2Search in Google Scholar

[45] Liu J.W., Li X.J., Dai L.M., Adv. Mater., 18 (2006), 1740.10.1002/adma.200502346Search in Google Scholar

[46] Zhang N., Sun J., Jiang D.Y., Feng T., Li Q., Carbon, 47 (2009), 1214.10.1016/j.carbon.2008.12.044Search in Google Scholar

[47] Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L. B., Lu W., Tour J.M., ACS Nano., 4 (2010), 4806.10.1021/nn1006368Search in Google Scholar

[48] JOHN J.N., MAHADEVAN C.K., Mater. Manuf. Processes, 23 (2008),809.10.1080/10426910802384573Search in Google Scholar

[49] John N.J., Selvarajan P., Silviya B.J.S., Mahadevan C.K., Mater. Manuf. Processes, 22 (2007), 379.10.1080/10426910701190907Search in Google Scholar

[50] Hench L.C., West J.K., Principles of Electronic Ceramics, John Wiley and Sons, New York, 1990.Search in Google Scholar

[51] Verma A., Takur O.P., Prakash C., Goel T.C., Mendrinatta R.G., Mater. Sci. Eng., B 116, 1 (2005), 1.10.1016/j.mseb.2004.08.011Search in Google Scholar

[52] Das B.P., Mahapatra P.K., Choudhary R.N.P., J. Mater. Sci. Mater. El., 15 (2004), 107.Search in Google Scholar

[53] Ahmed M.A., Ateia E., El-Dek S.I., J. Mater. Lett., 57 (2003), 4256.10.1016/S0167-577X(03)00300-8Search in Google Scholar

[54] Ahmed M.A., El Hiti, J. Chem. Phys., 23 (1995), 1883.Search in Google Scholar

[55] Zhong L., Yun K., Int. J. Nanomedicine, 8 (2010), 79.Search in Google Scholar

[56] Nasuha N., Hameed B.H., Din A.T.M., J. Hazard Mater., 175 (2010) 126.10.1016/j.jhazmat.2009.09.13819879046Search in Google Scholar

[57] Yu B.Y., Kwak S.Y., J. Mater. Chem., 22 (2012) 8345.Search in Google Scholar

[58] Xu T., Zhang L., Cheng H., Zhu Y., Appl. Catal. B: Environ., 101 (2011) 382.Search in Google Scholar

[59] Ashwini P.B., Shivaram D.S., Rupali P W., Latesh K.N., Bharat B.K., Green Chem., 14 (2012) 2790.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo