1. bookVolume 37 (2019): Issue 4 (December 2019)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Study of crystallographic, optical and sensing properties of Na2WO4 films deposited by thermal evaporation with several thickness

Published Online: 30 Dec 2019
Volume & Issue: Volume 37 (2019) - Issue 4 (December 2019)
Page range: 590 - 598
Received: 11 Oct 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Na2WO4 films have been grown at 400 °C using thermal evaporation technique. Their structural properties were characterized by XRD, while their chemical composition was verified by both EDX and X-ray photoelectron spectroscopy (XPS). The evolution of crystallinity was studied as a function of film thickness that ranged from 500 nm to 3000 nm. The grain size increased with increasing film thickness. The surface morphology of the prepared films was studied using scanning electron microscope (SEM) and atomic force microscopy (AFM). It has been observed that the average transmittance of samples in the visible and near infrared range has varied from 90 % to 78 % with the film thickness. The optical band gap of the Na2WO4 films varied from 3.8 eV to 4.1 eV. The crystalline size increased with increasing thickness and showed better sensing response to gases. Thus, this study confirmed the possibility of using Na2WO4 thick films as a sensor element for detection of ethanol (C2H5OH), acetone (C3H6O) methanol (CH3OH) and ammonia hydroxide (NH4OH) vapor at room temperature, where thicker films exhibited sensing properties with a maximum sensitivity at 25 °C in air, especially for NH4OH.

Keywords

[1] Santato C., Ulmann M., Augustynski J., J. Phys. Chem. B, 5 (2001), 936.10.1021/jp002232qSearch in Google Scholar

[2] RS C., BW F., Phys. Rev. Lett, 39 (1977), 232.10.1103/PhysRevLett.39.232Search in Google Scholar

[3] Dickens P.G., Whittingham M.S., Q. Rev. Chem. Soc., 1 (1968), 30.10.1039/qr9682200030Search in Google Scholar

[4] Goodenough J.B., Prog. Solid. Sate Ch., 5 (1971), 145.10.1016/0079-6786(71)90018-5Search in Google Scholar

[5] Clarke R., Phys. Rev. Lett., 39 (1977), 1550.10.1103/PhysRevLett.39.1550Search in Google Scholar

[6] Abdallah B., Kakhia M., Shaker S.A., Comp. Interfaces, 23 (2016), 663.10.1080/09276440.2016.1168121Search in Google Scholar

[7] Dakhel A.A., Mater. Res. Innov., 1 (2017), 55.Search in Google Scholar

[8] Sun H.-T., Cantalini C., Lozzi L., Passacantando M., Santucci S., Pelino M., Thin Solid Films, 1 (1996), 258.10.1016/S0040-6090(96)08745-7Search in Google Scholar

[9] Clifford P.K., Tuma D.T., Sensor. Actuat., 3 (1982), 255.10.1016/0250-6874(82)80027-9Search in Google Scholar

[10] Yu-De W., Zhan-Xian C., Yan-Feng L., ZhenLai Z., Xing-Hui W., Solid. State. Electron., 5 (2001), 639.10.1016/S0038-1101(01)00126-5Search in Google Scholar

[11] Ito K., Ohgami T., Nakazawa T., Sensor. Actuat. B Chem., 3 (1993), 161.10.1016/0925-4005(93)85250-EOpen DOISearch in Google Scholar

[12] Ando M., Suto S., Suzuki T., Tsuchida T., Nakayama C., Miura N., Yamazoe N., Chem. Lett., 2 (1994), 335.10.1246/cl.1994.335Open DOISearch in Google Scholar

[13] Chiu H.C., Tseung A.C.C., Electrode. Electrochem. Solid State Lett., 2(10) (1999), 540.10.1149/1.1390896Search in Google Scholar

[14] Qu W., Wlodarski W., Sensor. Actuat. B Chem., 1 – 3 (2000), 4.Search in Google Scholar

[15] Najdoski M.Z., Todorovski T., Mater. Chem. Phys., 2 – 3 (2007), 483.10.1016/j.matchemphys.2007.04.035Open DOISearch in Google Scholar

[16] Ahmad M.Z., Kang J.H., Sadek A.Z., Moafi A., Sberveglieri G., Wlodarski W., Procedia Engineering, 47 (2012), 358.10.1016/j.proeng.2012.09.157Search in Google Scholar

[17] Kanda K., Maekawa T., Sensor. Actuat. B Chem., 108 (2005), 97.10.1016/j.snb.2005.01.038Search in Google Scholar

[18] Patil P.S., B. Mater. Sci., 4 (2000), 309.10.1007/BF02720088Search in Google Scholar

[19] Mohammad AL A., Gillet M., Thin Solid Films, 1 – 2 (2002), 302.10.1016/S0040-6090(02)00090-1Search in Google Scholar

[20] Ponzoni A., Comini E., Ferroni M., Sberveglieri G., Thin Solid Films, 1 (2005), 81.10.1016/j.tsf.2005.04.031Search in Google Scholar

[21] Patel K., Panchal C., Kheraj V., Desai M., Mater. Chem. Phys., 1 (2009), 475.10.1021/cm803285bOpen DOISearch in Google Scholar

[22] Zhu Y.Q., Hu W., Hsu W.K., Terrones M., Grobert N., Hare J.P., Kroto H.W., Walton D.R.M., Terrones H., Chem. Phys. Lett., 5 – 6 (1999), 327.10.1016/S0009-2614(99)00732-0Search in Google Scholar

[23] Mrada O., Ismaila I.M., Abdallahb B., Rihawya M.S., J. Optoelectron. Adv. Mat., 9 – 10 (2014), 1099Search in Google Scholar

[24] Kishi K., Kirimura H., Fujimoto Y., Surf. Sci., 3 (1987), 586.10.1016/0039-6028(87)90207-XOpen DOISearch in Google Scholar

[25] Narasimham A.J., Green A., Matyi R.J., Khare P., Vo T., Diebold A., Labella V.P., AIP. Adv., 11 (2015), 117107.10.1063/1.4935372Search in Google Scholar

[26] Kawasaki H., Matsunaga T., Guan W., Ohshima T., Yagyu Y., Suda Y., J. Plasma Fusion Res., 8 (2009), 1431.Search in Google Scholar

[27] Bertus L.M., Faure C., Danine A., Labrugere C., Campet G., Rougier A., Duta A., Mater. Chem. Phys., 1 (2013), 49.10.1016/j.matchemphys.2013.02.047Search in Google Scholar

[28] Zhuiykov S., Hai Z., Xu H., Xue C., Int. J. Mater. Metall. Eng., 1 (2017), 46.Search in Google Scholar

[29] Zhu C., Osherov A., Panzer M.J., Electrochim. Acta, 30 (2013), 771.10.1016/j.electacta.2013.08.038Search in Google Scholar

[30] Regragui M., Addou M., Outzourhit A., Idrissi EL E., Kachouane A., Bougrine A., Sol. Energ. Mat. Sol. C., 4 (2003), 341.10.1016/S0927-0248(02)00353-7Search in Google Scholar

[31] Al-Khawaja S., Abdallah B., Shaker S.A., Kakhia M., Comp. Interface., 3 (2015), 221.10.1080/15685543.2015.1002259Search in Google Scholar

[32] Abdallah B., Jazmatia A.K., Refaai R., Mat. Res., 3 (2017), 607.10.1590/1980-5373-mr-2016-0478Search in Google Scholar

[33] Prathap P., Revathi N., Subbaiah Y.P.V., Reddy K.T.R., Phys.-Condens. Mat., 3 (2008), 035205.10.1088/0953-8984/20/03/035205Search in Google Scholar

[34] Wang J., Gao L., J. Mater. Chem., 10 (2003), 2551.10.1039/b307565fSearch in Google Scholar

[35] Rahmane S., Djouadi M.A., Aida M.S., Barreau N., Abdallah B., Zoubir H.N., Thin Solid Films, 1 (2010), 5.10.1016/j.tsf.2010.06.063Search in Google Scholar

[36] Abdallah B., Jazmati A.K., Kakhia M., Optik, 158 (2018), 1113.10.1016/j.ijleo.2018.01.008Search in Google Scholar

[37] Rao K.S., Kanth B.R., Devi G.S., Mukhopadhyay P., J. Mater. Sci.-Mater. El, 9 (2011), 1466.Search in Google Scholar

[38] Abdallah B., Nasrallah F., Alnama K., Mod. Phy. Lett. B, 04 (2019),Search in Google Scholar

[39] Khadayate R.S., Waghulde R.B., Wankhede M.G., Sali J.V., Patil P.P., B. Mater. Sci., 2 (2007), 129.10.1007/s12034-007-0023-8Search in Google Scholar

[40] Li X., Chang Y., Long Y., Mater. Sci. Eng. C, 4 (2012), 817.Search in Google Scholar

[41] Lupan O., Ursaki V.V., Chai G., Chow L., Emelchenko G.A., Tiginyanu I.M., Gruzintsev A.N., Redkin A.N., Sensor. Actuat. B Chem., 1 (2010), 56.10.1016/j.snb.2009.10.038Search in Google Scholar

[42] Wongchoosuk C., Choopun S., Tuantranont A., Kerdcharoen T., Mat. Res Innov., 13 (2009), 185.10.1179/143307509X437572Search in Google Scholar

[43] Dighavkar C., Arch. Appl. Sci. Res, 6 (2013), 96.Search in Google Scholar

[44] Lu J. G., Chang P., Fan Z., Mater. Sci. Eng. R Rep., 1 – 3 (2006), 49.Search in Google Scholar

[45] Wang F., Fan J., Sun Q., Jiang Q., Chen S., Zhou W., J. Nanomater, (2016), 1.10.1155/2016/3087491Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo