1. bookVolume 36 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Study on some linear and nonlinear optical parameters of glycine hydrofluoride single crystals

Published Online: 01 Feb 2019
Volume & Issue: Volume 36 (2018) - Issue 4 (December 2018)
Page range: 685 - 696
Received: 28 Nov 2017
Accepted: 16 May 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Single crystal of glycine hydroflruoride (GHF) was grown from aqueous solution by slow evaporation technique. The structure of the grown crystal was tested and analyzed through X-ray powder diffraction. The functional groups have been identified from the FT-IR spectra. Slabs cut normal to the b-axis from the grown crystal were subjected to incident radiation with a wavelength range of 200 nm to 800 nm to investigate the transmittance and reflectance spectra. Linear optical parameters such as extinction coefficient k, refractive index n and both the real and imaginary parts: ∊real and ∊im of the dielectric permittivity were calculated as functions of the incident photon energy. The dispersion of the refractive index was fitted in terms of Cauchy formula and Wemple-DiDomenico single oscillator model. GHF crystals exhibited indirect optical interband transition and the optical energy gap Eg was determined by using Tauc plot. The indirect band gaps at elevated temperatures were determined and their temperature dependence was estimated. Optical band gap Eg values were found to decrease with an increase in crystal temperature; however, the band tail width exhibited opposite behavior. The nonlinear optical potential was examined by the second harmonic generation (SHG) test.

Keywords

[1] Fleck M., Petrosyan A.M., Salts of Amino Acids: Crystallization, Structure and Properties, Springer, Switzerland, 2014.10.1007/978-3-319-06299-0Search in Google Scholar

[2] Pačesová S., Březina B., Jastrabík L., Phys. Status Solidi B, 2 (1983), 645.10.1002/pssb.2221160226Open DOISearch in Google Scholar

[3] Moss T.S., Burrel G.J., Ellis E., Semiconductor Optoelectronics, Butterworths, London, 1973.10.1016/B978-0-408-70326-0.50010-7Search in Google Scholar

[4] Vijayan N., Bhagavannarayana G., Sharma S.N., Das S., J. Mater. Sci., 13 (2009), 3457.10.1007/s10853-009-3459-ySearch in Google Scholar

[5] Selvaraju K., Valluvan R., Kumararaman S., Mater. Sci. Lett., 23 (2006), 2848.10.1016/j.matlet.2006.01.105Search in Google Scholar

[6] Fleck M., Ghazaryan V.V., Petrosyan A.M., J. Mol. Struct., 1 (2010), 83.10.1016/j.molstruc.2010.09.010Search in Google Scholar

[7] Rosado M.T., Duarte M.L.T., Fausto R., Vib. Spectrosc., 1 (1998), 35.10.1016/S0924-2031(97)00050-7Search in Google Scholar

[8] Ibrahim M., Nada A., Kamal D.E., Indian J. Pure Appl. Phys., 12 (2005), 911.Search in Google Scholar

[9] Socrates G., Infrared and Raman characteristic group frequencies: tables and charts, John Wiley & Sons, Chichester, 2001.Search in Google Scholar

[10] Stuart B.H., Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Chichester, 2004.10.1002/0470011149Search in Google Scholar

[11] Al-Faleh R.S., Zihlif A.M., Physica B, 10 (2011), 1919.10.1016/j.physb.2011.01.076Search in Google Scholar

[12] Abu El-Fadl A., Gaffar M.A., Omar M.H., Physica B, 3 – 4 (1999), 403.10.1016/S0921-4526(99)00117-9Search in Google Scholar

[13] Al-Kuhaili M.F., Opt. Mater., 3 (2004), 383.10.1016/j.optmat.2004.04.014Open DOISearch in Google Scholar

[14] Wemple S.H., Didomenico M. JR., Phys. Rev. B, 4 (1971), 1338.10.1103/PhysRevB.3.1338Search in Google Scholar

[15] Wemple S.H., Didomenico M. JR., Phys. Rev. Lett., 20 (1969), 1156.10.1103/PhysRevLett.23.1156Open DOISearch in Google Scholar

[16] Dahshan A., Amer H.H., Aly K.A., J. Phys. D: Appl. Phys., 21 (2008), 215401.10.1088/0022-3727/41/21/215401Search in Google Scholar

[17] Zhokhavets U., Goldhahn R., Gobsch G., Schliefke W., Synth. Met., 3 (2003), 491.10.1016/S0379-6779(02)00502-7Search in Google Scholar

[18] Sharma P., Sharma V., Katyal S.C., Chalcogenide Lett., 10 (2006), 73.Search in Google Scholar

[19] Caglar Y., Ilican S., Caglar M., Eur. Phys. J. B, 3 (2007), 251.10.1140/epjb/e2007-00227-yOpen DOISearch in Google Scholar

[20] Tauc J., Grigorovici R., Vancu A., Phys. Status Solidi B, 2 (1996), 627.Search in Google Scholar

[21] Gaffar M.A., AEl-Fadl A., Bin Anooz S., Cryst. Res. Technol., 9 (2003), 798.10.1002/crat.200310098Open DOISearch in Google Scholar

[22] AEl-Fadl A., Soltan A.S., Shaalan N.M., Opt. Laser Technol., 7 (2007), 1310.10.1016/j.optlastec.2006.12.004Search in Google Scholar

[23] AEl-Fadl A., Nashaat A.M., Open Mater. Sci. J., (2015), 162.10.2174/1874088X01509010162Search in Google Scholar

[24] Urbach F., Phys. Rev., 5 (1953), 1324.10.1103/PhysRev.92.1324Search in Google Scholar

[25] Kurtz S.K., Perry T.T., J. Appl. Phys., 8 (1968), 3798.10.1063/1.1656857Search in Google Scholar

[26] Kannan V., Bairava Ganesh R., Sathyalakshmi R., Rajesh N.P., Ramasamy P., Cryst. Res. Technol., 7 (2006), 678.10.1002/crat.200510648Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo