1. bookVolume 36 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Enhancement in magnetic and electrical properties of Ni substituted Mg ferrite

Published Online: 01 Feb 2019
Volume & Issue: Volume 36 (2018) - Issue 4 (December 2018)
Page range: 644 - 654
Received: 07 Sep 2017
Accepted: 12 May 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this work, Ni substituted magnesium spinel ferrites having general formula Mg1−xNixFe2O4 (where x = 0.0, 0.1, 0.15, 0.2, 0.25 and 0.3) were synthesized by standard solid state reaction method. All the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), DC resistivity measurements. X-ray diffraction analysis confirmed the single spinel phase. The lattice constant decreased with increasing Ni content due to the difference in the ionic radii of Mg2+ and Ni2+ ions. The FT-IR spectra reveled two prominent frequency bands in the wave number range of 400 cm−1 to 600 cm−1, which confirmed the cubic spinel structure of obtained compound and completion of chemical reaction. Magnetic studies revealed that the saturation magnetization increased with the substitution of Ni. The increase in magnetization was explained on the basis of distribution of magnetic and non-magnetic cations among A and B sites of the spinel lattice. A significant influence of cation distribution on DC electrical resistivity and activation energy was observed.

Keywords

[1] Gadem N.N., Kadu A.V., Padole P.R., Bodade A.B., Chaudhari G.N., Sens. Trans., 110 (2011), 86.Search in Google Scholar

[2] Goldman A., Modern Ferrite Technology, Springer, New York, 1990.Search in Google Scholar

[3] Tatarchuk T., Bououdina M., Vijaya J., Kennedy J.L., Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications, in: Fesenko O., Yatsenko L. (Eds.) Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer, Cham, Switzerland 2017, p.305.10.1007/978-3-319-56422-7_22Search in Google Scholar

[4] El Hiti M., Phase Transit., 54 (1995), 117.10.1080/01411599508213222Search in Google Scholar

[5] Lakshman A., Rao S.V.P., Rao P.B., Rao K.H., J. Phys. D Appl. Phys., 38 (2005), 673.10.1088/0022-3727/38/5/002Open DOISearch in Google Scholar

[6] Ravindre D., Reddy V.B.P., J. Magn. Magn. Mater., 263 (2003), 127.Search in Google Scholar

[7] Thant A.A., Srimala S., Caung P., J. Aust. Ceram. Soc., 46 (2010), 11.Search in Google Scholar

[8] Salmi S., El Azhari M., El Grini A., Hourmatallah A., Benzakour N., Bouslykhane K., Marzouk A., IOP Conf. Ser. Mater. Sci. Eng., 186 (2017), 1.10.1088/1757-899X/186/1/012016Search in Google Scholar

[9] Iqbal M.J, Ahmad Z., Meydan T., Nlebedim I.C., Mater. Res. Bull., 47 (2012), 344.10.1016/j.materresbull.2011.11.011Open DOISearch in Google Scholar

[10] Mccusker L.B., Dreele von R.B., Cox D.E., Louër D., Scardi P., J. Appl. Crystallogr., 32 (1999), 36.10.1107/S0021889898009856Search in Google Scholar

[11] Henderson M.B., Charnock J.M., Plant D.A., J. Phys.-Condens. Mat., 19 (2007), 076214.10.1088/0953-8984/19/7/07621422251601Search in Google Scholar

[12] Airimioaei M., Palamaru M.N., Iordan A.R., Berthet P., Decorse C., Curecheriu L., Mitoseriu L., J. Am. Ceram. Soc., 97 (2014), 519.10.1111/jace.12683Open DOISearch in Google Scholar

[13] Haque M.M., Maria K.H., Choudhury S., Bhuiyan M.A., Hakim M.A., JCPR, 14 (2013) 82.Search in Google Scholar

[14] Burger M.J., J. Crystal-structure Analysis, John Wiley, New York, 1960.Search in Google Scholar

[15] Patange S.M., Shirsath S.E, Toksha B.G, Jadhav S.S., Shukla S.J, Jadhav K.M., Appl. Phys. A Mater., 95 (2009), 429.10.1007/s00339-008-4897-0Search in Google Scholar

[16] Kumar E.R., Kamzin A.S., Prakash T., J. Magn. Magn. Mater., 378 (2015), 389.10.1016/j.jmmm.2014.11.019Search in Google Scholar

[17] Berchmans L.J., Selvan R.K., Kumar P.N.S., Augustin C.O, J. Magn. Magn. Mater., 279 (2004), 103.10.1016/j.jmmm.2004.01.073Search in Google Scholar

[18] Waldron R.D., Phys. Rev., 99 (1955), 1727.10.1103/PhysRev.99.1727Search in Google Scholar

[19] Franco A.JR., Silva M.S., J. Appl. Phys., 109 (2011), 07B505.10.1063/1.3536790Search in Google Scholar

[20] Loganathan A., Kumar K., IJCR, 7 (2015),20585.Search in Google Scholar

[21] Uitert van L.G., J. Chem. Phys., 23 (1955), 1883.10.1063/1.1740598Search in Google Scholar

[22] Bhavikattia A.M., Mallikarjun M., IJSR., 12 (2015), 232.Search in Google Scholar

[23] El Hiti M.A., J. Phys. D Appl. Phys., 29 (1996), 501.10.1088/0022-3727/29/3/002Search in Google Scholar

[24] El-Sayed A.M., Mater. Chem. Phys., 82 (2003), 583.10.1016/S0254-0584(03)00319-5Open DOISearch in Google Scholar

[25] Methasiri T., Yoodee K., Tang I.M., Physica B, 101 (1980), 243.10.1016/0378-4363(80)90109-6Search in Google Scholar

[26] Ramarao K., Rajesh Babu B., Kishore Babu B., Veeraiah V., Ramarao S.D., Rajasekhar K., Venkateswara Rao A., Physica B., 528 (2018), 18.10.1016/j.physb.2017.10.072Search in Google Scholar

[27] Ramarao K., Rajesh Babu B., Kishore Babu B., Veeraiah V., Ramarao S.D., Rajasekhar K., Venkateswara Rao A., J. Electron. Mater., 47 (2018), 2997.10.1007/s11664-018-6179-8Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo