1. bookVolume 36 (2018): Issue 3 (September 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparative study of absorption band edge tailoring by cationic and anionic doping in TiO2

Published Online: 02 Nov 2018
Volume & Issue: Volume 36 (2018) - Issue 3 (September 2018)
Page range: 435 - 438
Received: 06 Jul 2017
Accepted: 14 May 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Titanium dioxide (TiO2) is one of the most favored metal oxide semiconductors for the use as photoanode in photoelectrochemical cells (PEC) splitting the water into hydrogen and oxygen. However, the major impediment is its large bandgap that limits its utilization as photoanode. Doping has evolved as an effective strategy for tailoring optical and electronic properties of TiO2. This paper describes the synthesis of undoped as well as iron (Fe, cationic) and nitrogen (N, anionic) doped nanocrystalline titanium dioxide by sol-gel spin coating method for solar energy absorption in the visible region. All the prepared thin films were characterized by X-ray diffraction and UV-Vis spectroscopy. Doping of both Fe and N into TiO2 resulted in a shift of absorption band edge towards the visible region of solar spectrum.

Keywords

[1] Hu Y., Tsai H.L., Huangk C.L., Eur. Ceram. Soc., 23 (2003), 691.10.1016/S0955-2219(02)00194-2Search in Google Scholar

[2] Shao Y., Tang D., Sun J., Lee Y., Xiong W., China Particuology, 2 (2004), 119.10.1016/S1672-2515(07)60036-0Open DOISearch in Google Scholar

[3] Kaczmarek D., Prociow E. L., Domaradzki J., Borkowska A., Mielcarek W., Wojcieszak D., Mater. Sci.-Poland, 26 (1) (2008), 113.Search in Google Scholar

[4] Chambers S.A., Thevuthasan S., Farrow R.F.C., Marks R.F., Thiele J.U., Folks L., Appl. Phys. Lett., 79 (2001), 3467.10.1063/1.1420434Open DOISearch in Google Scholar

[5] Kumazawa N., Islam M. R., Takeuchi M., J. Electrochem. Chem., 472 (1999), 137.10.1016/S0022-0728(99)00293-4Search in Google Scholar

[6] Ohko Y., Tatsuma T., Fujii T., Naoi K., Niwa C., Kubata Y., Fujishima A., Nat. Mater., 2 (2003), 29.10.1038/nmat796Search in Google Scholar

[7] Gao X., Zhu H., Pan G., Ye S., Lan Y., Wu F., Song D., J. Phys. Chem. B, 108 (2004), 2868.10.1021/jp036821iSearch in Google Scholar

[8] Wang Y.G., Wang Z.D., Xia Y.Y., Electrochim. Acta, 50 (2005), 5641.10.1016/j.electacta.2005.03.042Search in Google Scholar

[9] Fahmi A., Minot C., Silvi B., Causa M., Phys. Rev. B, 47 (1993), 11717.10.1103/PhysRevB.47.11717Search in Google Scholar

[10] Zaleska A., Recent Pat. Eng., 2 (2008),157.10.2174/187221208786306289Search in Google Scholar

[11] Bak T., Nowotny J., Rekas M., Sorrell C.C., Int. J. Hydrogen Energ., 27 (2002), 991.10.1016/S0360-3199(02)00022-8Search in Google Scholar

[12] Choi W.Y., Termin A., Hoffmann M. R., J. Phys. Chem., 98 (1994), 13669.10.1021/j100102a038Open DOISearch in Google Scholar

[13] Anpo M., Matsuoka M., Mishima H., Yamashita H., Res. Chem. Intermediat., 23 (1997), 197.10.1163/156856797X00420Open DOISearch in Google Scholar

[14] Ghosh A.K., Maruska H.P., J. Electrochem. Soc., 124 (1977), 1516.10.1149/1.2133104Search in Google Scholar

[15] Ingler W.B., Khan S.U.M., Int. J. Hydrogen Energ., 30 (2005), 821.10.1016/j.ijhydene.2004.06.014Open DOISearch in Google Scholar

[16] Yarahmadi S.S., Wijayantha K.G.U., Tahir A.A., Vaidhyanathan B., J. Phys. Chem. C, 113 (2009), 4768.10.1021/jp808453zSearch in Google Scholar

[17] Mohapatra S.K., Mahajan V.K., Misra M., Nanotechnology, 18 (2007), 445705.10.1088/0957-4484/18/44/445705Open DOISearch in Google Scholar

[18] Yan Y., Ahn K.S., Shet S., Deutsch T., Huda M., Wei S.H., Turner J., Al-Jassim M.M., Proc. SPIE, 6650 (2007), 66500H.Search in Google Scholar

[19] Cui X., Ma M., Zhang W., Yang Y.C., Zhang Z.H., Electrochem. Commun., 10 (2008), 367.10.1016/j.elecom.2007.12.037Search in Google Scholar

[20] Lin L., Lin W., Zhu Y.X., Zhao B.Y., Xie Y.C., Chem. Lett., 34 (2005), 284.10.1246/cl.2005.284Search in Google Scholar

[21] Xu C.K., Shaban Y.A., Ingler W.B., Khan S.U.M., Sol. Energ. Mat. Sol. C., 91 (2007), 938.10.1016/j.solmat.2007.02.010Search in Google Scholar

[22] Sakthivel S., Kisch H., Angew. Chem. Int. Edit., 42 (2003), 4908.10.1002/anie.20035157714579435Open DOISearch in Google Scholar

[23] Ohno T., Mitsui T., Matsumura M., Chem. Lett., 32 (2003), 364.10.1246/cl.2003.364Open DOISearch in Google Scholar

[24] Zhao W., Ma W.H., Chen C.C., Zhao J.C., Shuai Z.G., J. Am. Chem. Soc., 126 (2004), 4782.10.1021/ja0396753Search in Google Scholar

[25] Luo H.M., Takata T., Lee Y.G., Zhao J.F., Domen K., Yan Y.S., Chem. Mater., 16 (2004), 846.10.1021/cm035090wOpen DOISearch in Google Scholar

[26] Choi W., Termin A., Hoffmann M.R., J. Phys.Chem., 98 (1994), 13669.10.1021/j100102a038Open DOISearch in Google Scholar

[27] Ranjit K.T., Viswanathan B., J. Photochem. Photobiol. A, 108 (2007), 79.Search in Google Scholar

[28] Shin C.H., Bugli G., Djega-Mariadassou G., J. Solid State Chem., 95 (1991), 145.10.1016/0022-4596(91)90384-TSearch in Google Scholar

[29] Pongwan P., Inceesungvorn B., Wetchakun K., Phanichphant S., Wetchakun N., Eng. J., 16 (3) (2012), 143.10.4186/ej.2012.16.3.143Search in Google Scholar

[30] Singh A.P., Kumari S., Sonal, Shrivastav R., Dass S., Satsangi V.R., J. Sci. Conf. Proc., 1 (2009), 82.10.1166/jcp.2009.014Search in Google Scholar

[31] Singh A.P., Kumari S., Shrivastav R., Dass S., Satsangi V.R., Int. J. Hydrogen Energ., 33 (2008), 5363.10.1016/j.ijhydene.2008.07.041Open DOISearch in Google Scholar

[32] Serpone N., J. Phys. Chem. B, 110 (2006), 24287.10.1021/jp065659r17134177Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo