Open Access

Least energy sign-changing solutions for a nonlocal anisotropic Kirchhoff type equation


In this paper, we investigate the existence of sign-changing solutions for the following class of fractional Kirchhoff type equations with potential (1+b[ u ]α2)((-Δx)αu-Δyu)+V(x,y)u=f(x,y,u),(x,y)N=n×m, \left( {1 + b\left[ u \right]_\alpha ^2} \right)\left( {{{\left( { - {\Delta _x}} \right)}^\alpha }u - {\Delta _y}u} \right) + V\left( {x,y} \right)u = f\left( {x,y,u} \right),\left( {x,y} \right) \in {\mathbb{R}^N} = {\mathbb{R}^n} \times {\mathbb{R}^m}, where [ u ]α=(N(| (-Δx)α2u |2+| yu |2)dxdy)12 {\left[ u \right]_\alpha } = {\left( {\int {_{{\mathbb{R}^N}}\left( {{{\left| {{{\left( { - {\Delta _x}} \right)}^{{\alpha \over 2}}}u} \right|}^2} + {{\left| {{\nabla _y}u} \right|}^2}} \right)dxdy} } \right)^{{1 \over 2}}} . Based on variational approach and a variant of the quantitative strain lemma, for each b > 0, we show the existence of a least energy nodal solution ub. In addition, a convergence property of ub as b ↘ 0 is established.