Open Access

Experimental immobilization of Zn, Pb and Cd by additives to highly contaminated soils


Cite

Bajda, T., Marchlewski, T., & Manecki, M. (2011). Pyromorphite formation from montmorillonite adsorbed lead. Mineralogia, 42(2-3), 75-91. DOI: 10.2478/v10002-011-0008-5.10.2478/v10002-011-0008-5 Search in Google Scholar

Baran, S., & Faber, A. (1976). Wpływ zanieczyszczeń emitowanych przez huty cynku na zawartość ołowiu i cynku w glebie i w roślinach. Zeszyty Problemowe Postępów Nauk Rolniczych, 179, 605-612. [In Polish]. Search in Google Scholar

Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in smelter contaminated soils. Environmental Pollution, 127(1), 73-82. DOI: 10.1016/S0269-7491(03)00250-1.10.1016/S0269-7491(03)00250-114553997 Search in Google Scholar

Bielińska, E. J., Mocek-Płóciniak A. (2010). Impact of ecochemical soil conditions on selected heavy metals content in garden allotment vegetables. Polish Journal of Environmental Studies, 19(5). 895-900. Search in Google Scholar

Břendová, K., Tlustoš, P., & Száková, J. (2015). Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant, Soil and Environment, 61(7), 303-308. DOI: 10.17221/181/2015-pse.10.17221/181/2015-PSE Search in Google Scholar

Brown, S., Christensen, B., Lombi, E., McLaughlin, M., Mc-Grath, S., Colpaert, J., & Vangrosnveld, J. (2005). An inter-laboratory study to test the ability of amendments to reduce bioavailability of Cd, Pb and Zn in situ. Environmental Pollution, 138(1), 34-45. DOI: 10.1016/j. envpol.2005.02.020.10.1016/j.envpol.2005.02.020 Search in Google Scholar

Cui, H., Bao, B., Cao, Y., Zhang, S., Shi, J., Zhou, J., Zhou, J. (2022). Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations. Environmental Pollution, 292, A, 118323. DOI: 10.1016/j. envpol.2021.118323.10.1016/j.envpol.2021.118323 Search in Google Scholar

Chen, M., & Ma L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491-499. DOI: 10.2136/sssaj2001.652491x.10.2136/sssaj2001.652491x Search in Google Scholar

Debiec, K., Rzepa, G., Bajda, T., Zych, L., Krzysztoforski, J., Sklodowska, A., & Drewniak, L. (2017). The influence of thermal treatment on bioweathering and arsenic sorption capacity of a natural iron (oxyhydr)oxide-based adsorbent. Chemosphere, 188, 99-109. DOI: 10.1016/j. chemosphere.2017.08.142.10.1016/j.chemosphere.2017.08.142 Search in Google Scholar

Diatta, J., Wirth, S., & Chudzińska, E. (2010). Application of the partition coefficient for assessing heavy metals mobility within the Miasteczko Slaskie zinc smelter impact zone (Poland). Ecological Chemistry and Engineering A, 17(1-2), 1203-1212. Search in Google Scholar

Du, J., Zhou, A., Lin, X., Bu, Y. (2022). Adsorption mechanism of Pb2+ in montmorillonite nanopore under various temperatures and concentrations. Environmental Research, 209, 112817. DOI: 10.1016/j.envres.2022.112817.10.1016/j.envres.2022.11281735092742 Search in Google Scholar

Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl–mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, 75(7), 1858-1868. DOI: 10.1016/j.gca.2011.01.021.10.1016/j.gca.2011.01.021 Search in Google Scholar

Gerold-Śmietańska, I. (2007). Kierunki przemian fitocenoz borowych obserwowanych na stałych powierzchniach badawczych w okolicach huty cynku w Miasteczku Śląskim. Ph.D. thesis, University of Silesia in Katowice, Poland [In Polish]. Search in Google Scholar

Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and redmud. Environmental Pollution, 142(3), 530-539. DOI: 10.1016/j.envpol.2005.10.017.10.1016/j.envpol.2005.10.01716321462 Search in Google Scholar

Grobelak, A., Kacprzak, M., Grosser, A., & Napora, A. (2013). Chemophytostabilisation of soil contaminated with Cadmium, Lead and Zinc. Annual Set The Environment Protection, 15, 1982-2002. [In Polish with English summary]. Search in Google Scholar

Grobelak, A., & Napora, A. (2015). The Chemophytostabilisation Process of Heavy Metal Polluted Soil. PLoS ONE, 10(6), e0129538. DOI: 10.1371/journal.pone.0129538.10.1371/journal.pone.0129538448268126115341 Search in Google Scholar

Heiri, O., Lotter, A.F., & Lemcke, G. (2001). Loss of ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101-110. DOI: 10.1023/A:1008119611481.10.1023/A:1008119611481 Search in Google Scholar

Hettiarachchi, G. M., & Pierzynski, G. M. (2004), Soil lead bio-availability and in situ remediation of lead-contaminated soils: a review. Environmental Progress, 23(1), 78-93. DOI: 10.1002/ep.10004.10.1002/ep.10004 Search in Google Scholar

Hong, C. O., Lee, D. K., & Kim, P. J. (2008). Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere, 70(11), 2009-2015. DOI: 10.1016/j.chemo-sphere.2007.09.025.10.1016/j.chemosphere.2007.09.025 Search in Google Scholar

Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & van der Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment, 178, 21-28. DOI: 10.1016/0048-9697(95)04793-X.10.1016/0048-9697(95)04793-X Search in Google Scholar

Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31(9-10), 1299-1396. DOI: 10.1080/00103620009370514.10.1080/00103620009370514 Search in Google Scholar

Houben, D., Pircar, J., Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 123, 87-94. DOI: 10.1016/j.gexplo.2011.10.004.10.1016/j.gexplo.2011.10.004 Search in Google Scholar

Iakovleva, E., Mäkilä, E., Salonen, J., Sitarz, M., Wang, S., & Sillanpää, M. (2015). Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81, 30-40. DOI: 10.1016/j.ecoleng.2015.04.046.10.1016/j.ecoleng.2015.04.046 Search in Google Scholar

Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. CRC Press.10.1201/9781420039900 Search in Google Scholar

Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace Elements from Soil to Human. Springer.10.1007/978-3-540-32714-1 Search in Google Scholar

Kaczmarek, K., Świsłowski, P., & Rajfur, M. (2017). The active biomonitoring using mosses as bioindicators near Miasteczko Slaskie. Proceedings of ECOpole, 11(2), 507-516. DOI: 10.2429/proc.2017.11(2)055 [In Polish with English summary]. Search in Google Scholar

Kaczorek, D., Brümmer, G. W., & Sommer, M. (2009). Content and Binding Forms of Heavy Metals, Aluminium and Phosphorous in Bog Iron Ores from Poland. Journal of Environment Quality, 38(3), 1109-1119. DOI: 10.2134/jeq2008.0125.10.2134/jeq2008.012519398508 Search in Google Scholar

Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247-268. DOI: 10.1016/j.gexplo.2016.11.021.10.1016/j.gexplo.2016.11.021 Search in Google Scholar

Kicińska, A. (2011). Occurrence and mobility of zinc, lead and cadmium in soils polluted by mining and metallurgical industries. Ochrona Środowiska i Zasobów Naturalnych, 42, 152-162 [In Polish with English summary]. Search in Google Scholar

Kicińska, A. (2019). Environmental risk related to the presence and mobility of As, Cd and Tl in soil in the vicinity of a metallurgical plant – long-term observations. Chemosphere, 236, 124308. DOI: 10.1016/j.chemo-sphere.2019.07.039.10.1016/j.chemosphere.2019.07.039 Search in Google Scholar

Kicińska, A. (2020). Lead and Zinc in Soils Around a Zinc-Works – Presence, Mobility and Environmental Risk. Journal of Ecological Engineering, 21(4), 185-198. DOI: 10.12911/22998993/119815.10.12911/22998993/119815 Search in Google Scholar

Kicińska A., Wikar. J. (2021). The effect of fertilizing soils degraded by the metallurgical industry on the content of elements in Lactuca sativa L. Scientific Reports, 11, 4072. DOI: 10.1038/s41598-021-83600-7.10.1038/s41598-021-83600-7789300733603123 Search in Google Scholar

Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2021). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), 1-14. DOI: 10.1111/ejss.13203.10.1111/ejss.13203 Search in Google Scholar

Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management, 28(1), 215-225. DOI: 10.1016/j.wasman.2006.12.012.10.1016/j.wasman.2006.12.01217320367 Search in Google Scholar

Kumpiene, J., Antelo, J., Bränvall, E., Carabante, I., Ek, K., Komárek, M., Söderberg, C., & Wårell L. (2019). In situ chemical stabilization of trace element-contaminated soil – Field demonstrations and barriers to transition from laboratory to the field – A review. Applied Geochemistry, 100, 335-351. DOI: 10.1016/j.apgeochem.2018.12.003.10.1016/j.apgeochem.2018.12.003 Search in Google Scholar

Lahori, A. H., Zhang, Z. Guo, Z., Mahar, A., Li, R., Awasthi, M. K., Sial, T. A., Kumbhar, F., Wang, P., Shen, F., Zhao, J., Huang, H. (2017a). Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 313-323. DOI: 10.1016/j.ecoenv.2017.07.049.10.1016/j.ecoenv.2017.07.04928756252 Search in Google Scholar

Lahori, A. H., Guo, Z. Y., Zhang, Z. Q., Li, R. H., Mahar, A., Awasthi, M. K., Shen, F., Sial, T. A., Kumbhar, F., Wang, P., Jiang, S. C. (2017b). Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere, 27(6), 991–1014. DOI: 10.1016/S1002-0160(17)60490-9.10.1016/S1002-0160(17)60490-9 Search in Google Scholar

Lahori, A.H., Mierzwa-Hersztek, M., Rashid, M., Kalhoro, S. A., Memon, M., Naheed, Z., Ahmed, M., Zhang, Z. (2020). Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils. Journal of Environmental Sciences, 87, 299-309. DOI: 10.1016/j. jes.2019.07.003.10.1016/j.jes.2019.07.003 Search in Google Scholar

Lee, S. H., Lee, J. S., Choi, Y. J. & Kim, J. G. (2009). In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77(8), 1069-1075. DOI: 10.1016/j.chemosphere.2009.08.056.10.1016/j.chemosphere.2009.08.05619786291 Search in Google Scholar

Liu, X., Hicher, P., Muresan, B., Saiyouri, N., & Hicher, P-Y. (2016). Heavy metal retention properties of kaolin and bentonite in a wide range of concentration and different pH conditions. Applied Clay Science, 119, 365-374. DOI: 10.1016/j.clay.2015.09.021.10.1016/j.clay.2015.09.021 Search in Google Scholar

Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1993). In situ lead immobilization by apatite. Environmental Science & Technology, 27(9), 1803-1810. DOI: 10.1021/es00046a007.10.1021/es00046a007 Search in Google Scholar

Mains, D., Craw, D., Rufaut, C. G. & Smith, C. M. S. (2006). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163-183. DOI: 10.1080/15226510600742559.10.1080/1522651060074255916924964 Search in Google Scholar

Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3, 178-181. DOI: 10.1007/s10311-005-0030-1.10.1007/s10311-005-0030-1 Search in Google Scholar

Manouchehri, N., Besancon S., & Bermond A. (2006). Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559(1), 105-112. DOI: 10.1016/j.aca.2005.11.050.10.1016/j.aca.2005.11.050 Search in Google Scholar

Manouchehri, N., & Bermond, A. (2009). EDTA in soil science: A review of its application in soil trace metal studies. Terrestrial and Aquatic Environmental Toxicology, 3(1), 1-15. Search in Google Scholar

Matusik, J., Bajda, T., & Manecki, M., (2008). Immobilization of aqueous cadmium by addition of phosphates. Journal of Hazardous Materials, 152(3), 1332-1339, DOI: 10.1016/j.jhazmat.2007.08.010.10.1016/j.jhazmat.2007.08.01017868991 Search in Google Scholar

Matusik, J., Bajda, T., & Manecki, M. (2012). Aqueous cadmium removal by hydroxylapatite and fluoroapatite. Geology, Geophysics and Environmental Protection, 38(4), 427-438. DOI: 10.7494/geol.2012.38.4.427.10.7494/geol.2012.38.4.427 Search in Google Scholar

McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management, 4449-8. Search in Google Scholar

Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments: An emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283. DOI: 10.1289/ehp.10608.10.1289/ehp.10608226502518335091 Search in Google Scholar

Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6(3), 121-133. DOI: 10.1007/s10311-007-0133-y.10.1007/s10311-007-0133-y Search in Google Scholar

Mignardi, S., Corami, A., Ferrini, V. (2012). Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86(4), 354-360. DOI: 10.1016/j. chemosphere.2011.09.050.10.1016/j.chemosphere.2011.09.050 Search in Google Scholar

Mitzia, K., Vítková, M., & Komárek M. (2020). Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: a temporal study of solid phase geochemistry under changing soil conditions. Chemosphere, 242, 125248. DOI: 10.1016/j.chemo-sphere.2019.125248.10.1016/j.chemosphere.2019.125248 Search in Google Scholar

Mohammed-Azizi, F., Dib, S., & Boufatit, M. (2013). Removal of heavy metals from aqueous solutions by Algerian bentonite. Desalination and Water Treatment, 51(22-24), 4447-4458. DOI: 10.1080/19443994.2013.770241.10.1080/19443994.2013.770241 Search in Google Scholar

Nadgórska-Socha, A., Kandziora-Ciupa, M., Ciepał, R., Musialik, D., & Barczyk, G. (2013). The activity of selected soil enzymes, and soil contamination with zinc, cadmium and lead in the vicinity of the zinc smelter “Miasteczko Slaskie”. Ecological Chemistry and Engineering A, 20(1), 123-131. DOI: 10.2428/ecea.2013.20(01)014.10.1007/s11356-012-1461-4 Search in Google Scholar

Naseem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0.10.1016/S0043-1354(01)00130-012230182 Search in Google Scholar

Nejad, Z. D., Jung, M. C., Kim, K-H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40, 927-953. DOI: 10.1007/s10653-017-9964-z.10.1007/s10653-017-9964-z28447234 Search in Google Scholar

Nkutha, C.S., Naidoo, E.B., & Shooto, N.D. (2021). Adsorptive studies of toxic metal ions of Cr(VI) and Pb(II) from synthetic wastewater by pristine and calcined coral limestones. South African Journal of Chemical Engineering, 36, 43-57. DOI: 10.1016/j.sajce.2021.01.001.10.1016/j.sajce.2021.01.001 Search in Google Scholar

Pająk, M., & Jasik, M. (2010). The level of Zn, Cd and Pb accumulation in top layer of forest soil in the neighbour-hood of metallurgic compex „Miasteczko Śląskie”. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 137, 112-122 [In Polish with English summary]. Search in Google Scholar

Pieczara G., & Rzepa G. (2016). The effect of Si content on ferrihydrite sorption capacity for Pb(II), Cu(II), Cr(VI), and P(V). Environmental Engineering and Management Journal, 15(9), 2095-2107. DOI: 10.30638/eemj.2016.226.10.30638/eemj.2016.226 Search in Google Scholar

Pueyo, M., López-Sánchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504(2), 217-226. DOI: 10.1016/j.aca.2003.10.047.10.1016/j.aca.2003.10.047 Search in Google Scholar

Raicevic, S., Kaluđjerović-Radoičić, T., & Zouboulis, A. I. (2005). In situ stabilization of toxic metals in polluted soils using phosphates: Theoretical prediction and experimental verification. Journal of Hazardous Materials, 117(1), 41-53. DOI: 10.1016/j.jhazmat.2004.07.024.10.1016/j.jhazmat.2004.07.02415621352 Search in Google Scholar

Rozpondek, R., Rozpondek, K., & Kacprzak, M. (2017). Evaluation of contamination od Zn-Pb industry degraded areas using spatial information. Ecological Engineering, 18(3), 106-113. DOI: 10.12912/23920629/70265 [In Polish with English summary].10.12912/23920629/70265 Search in Google Scholar

Rzepa, G., Bajda, T., & Ratajczak, T. (2009). Utilization of bog iron ores as sorbents of heavy metals. Journal of Hazardous Materials, 162(2-3), 1007-1013. DOI: 10.1016/j. jhazmat.2008.05.135.10.1016/j.jhazmat.2008.05.135 Search in Google Scholar

Rzepa, G., Bajda, T., Gaweł, A., Dębiec, K., & Drewniak, Ł. (2016). Mineral transformations and textural evolution during roasting of bog iron ores. Journal of Thermal Analysis and Calorimetry, 123(1), 615-630. DOI: 10.1007/s10973-015-4925-1.10.1007/s10973-015-4925-1 Search in Google Scholar

Santoro, A., Held, A., Linsinger, P. J. T., Pérez, A., & Ricci, M. (2017). Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of a certified reference material. Trends in Analytical Chemistry, 89, 34-40. DOI: 10.1016/j.trac.2017.01.010.10.1016/j.trac.2017.01.010538065128413235 Search in Google Scholar

Shi, Q., Zhang, S., Ge, J., Wei, J., Christodoulatos, C., Korfiatis, G. P., Meng, X. (2020). Lead immobilization by phosphate in the presence of iron oxides: Adsorption versus precipitation. Water Research, 179, 115853. DOI: 10.1016/j.watres.2020.115853.10.1016/j.watres.2020.11585332388052 Search in Google Scholar

Sierka, E., Palowski, B., & Kimsa, T. (2001). Zinc in soil around non-ferrous metals smelter. Archiwum Ochrony Środowiska, 27(2), 169-173. Search in Google Scholar

Sierka, E., Palowski, B., & Kimsa, T. (2002). Contamination of soil around non-ferrous metals smelter. Lead and cadmium. Chemia i Inżynieria Ekologiczna, 9, 893-896. Search in Google Scholar

Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27(4), 289-300. DOI: 10.1007/s10653-004-5977-5.10.1007/s10653-004-5977-516027964 Search in Google Scholar

Smieja-Król, B., Smieja, A., & Fiałkiewicz-Kozieł, B. (2017). Seasonal variations in trace metals distribution in degraded peatlands in Miasteczko Śl. (S Poland). Mineralogia – Special Papers, 47, 84. Search in Google Scholar

Song, Y., Zhao, Z., Li, J., You, Y., Ma, X., Li, J., & Cheng, X. (2021). Preparation of silicon-doped ferrihydrite for adsorption of lead and cadmium: Property and mechanism. Chinese Chemistry Letters, 32(10), 3169-3174. DOI: 10.1016/j.cclet.2021.03.001.10.1016/j.cclet.2021.03.001 Search in Google Scholar

Sun, W., Zhang, S., & Su, C. (2018). Impact of biochar on the bioremediation and phytoremediation of heavy metal(loid)s in soil. In N. Shiomi (Ed.) Advances in Bioremediation and Phytoremediation, IntechOpen. DOI: 10.5772/intechopen.70349.10.5772/intechopen.70349 Search in Google Scholar

Szrek, D., Bajda, T., & Manecki, M. (2011). A comparative study of the most effective amendment for Pb, Zn and Cd immobilization in contaminated soils. Journal of Environmental Science and Health A, 46(13), 1491-1502. DOI: 10.1080/10934529.2011.609082.10.1080/10934529.2011.60908221961559 Search in Google Scholar

Talaat, H. A., El Defrawy, N. M., Abulnour, A. G., Hani, H. A., & Tawfik, A. (2011). Evaluation of Heavy Metals Removal Using Some Egyptian Clays. International Proceedings of Chemical, Biological and Environmental Engineering, 6, 37-42. Search in Google Scholar

Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299-309. DOI: 10.1016/j. envint.2015.12.017.10.1016/j.envint.2015.12.017 Search in Google Scholar

Uchimiya, M., Bannon, D. I., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2012). Lead retention by broiler litter bio-chars in small arms range soil: Impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 60(20), 5035-5044. DOI: 10.1021/jf300825n.10.1021/jf300825n22548418 Search in Google Scholar

Usman, A. R. A., Kuzyakov, Y., Lorenz, K., Stahr, K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds. Journal of Plant Nutrition and Soil Science, 169(2), 205-212. DOI: 10.1002/jpln.200421685.10.1002/jpln.200421685 Search in Google Scholar

Vítková, M., Rákosová, S., Michálkova, Z., & Komárek, M. (2016). Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Journal of Environmental Management, 186(2), 268-276. DOI: 10.1016/j.jenvman.2016.06.003.10.1016/j.jenvman.2016.06.00327292579 Search in Google Scholar

Vondráčková, S., Hejcman, M., Tlustoš, P., & Száková, J. (2013). Effect of Quick Lime and Dolomite Application on Mobility of Elements (Cd, Zn, Pb, As, Fe, and Mn) in Contaminated Soils. Polish Journal of Environmental Studies, 22(2), 577-589. Search in Google Scholar

Vondráčková, S., Hejcman, M., Tlustoš, P., & Száková, J. (2017). Effect of rock phosphate and superphosphate application on mobility of elements (Cd, Zn, Pb, As, Fe, Mn) in contaminated soils. Environmental Engineering and Management Journal, 16(12), 2901-2910. DOI: 10.30638/eemj.2017.299.10.30638/eemj.2017.299 Search in Google Scholar

Vrînceanu, N. O., Motelică, D. M., Dumitru, M., Calciu, I., Tănase, V., & Preda, M. (2019). Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena, 176, 336-342. DOI: 10.1016/j.catena.2019.01.015.10.1016/j.catena.2019.01.015 Search in Google Scholar

Wang, Y., Li, F., Song, J., Xiao, R., Luo, L., Yang, Z., & Chai, L. (2018). Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud. Environmental Geochemistry and Health, 40(2), 2143-2153. DOI: 10.1007/s10653-018-0089-9.10.1007/s10653-018-0089-929651760 Search in Google Scholar

Widera, S. (1980). Contamination of the soil and assimilative organs of the pine-tree in various distance from the surface of emission. Archiwum Ochrony Środowiska, 3-4, 141-146 [In Polish with English summary]. Search in Google Scholar

Wołowiec, M., Tuchowska, M., Kudła, P., & Bajda, T. (2019). Synthesis and characterization of cadmium chlorapatite Cd5(PO4)3Cl, Mineralogia, 50(1-4), 3-12. DOI: 10.2478/mipo-2019-0001.10.2478/mipo-2019-0001 Search in Google Scholar

Xiu, W., Yu, X., Guo, H., Yuan, W., Ke T., Liu, G., Tao, J., Hou, W., & Dong, H., (2019). Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals. Chemosphere, 225, 755-764. DOI: 10.1016/j. chemosphere.2019.02.098.10.1016/j.chemosphere.2019.02.098 Search in Google Scholar

Xu, P., Sun, C-X., Ye, X-Z., Xiao, W-D., Zhang, Q., Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 132, 94-100. DOI: 10.1016/j.ecoenv.2016.05.031.10.1016/j.ecoenv.2016.05.03127285283 Search in Google Scholar

Xu D-M., Fu R-B., Wang J-X., Shi Y-X., & Guo X-P. (2021). Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated valuation methods – A critical review. Journal of Cleaner Production, 321, 128730. DOI: 10.1016/j.jclepro.2021.128730.10.1016/j.jclepro.2021.128730 Search in Google Scholar

Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W., & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884-891. DOI: 10.1016/j. chemosphere.2017.06.040.10.1016/j.chemosphere.2017.06.040 Search in Google Scholar

Zai, W., Zhang, X., Su, Y., Man, H. C., Li, G., & Lian, J. (2020). Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surface and Coatings Technology, 397, 125919. DOI: 10.1016/j.surfcoat.2020.125919.10.1016/j.surfcoat.2020.125919 Search in Google Scholar

Zhang, P., Ryan, J.A., & Bryndzia, L.T. (1997). Pyromorphite Formation from Goethite Adsorbed Lead. Environmental Science & Technology, 31(9), 2673-2678, DOI: 10.1021/es970087x.10.1021/es970087x Search in Google Scholar

Zhang, Y., Zhang, H., Wang, M., Zhang, Z., Marhaba, T., Sun, C. & Zhang, W. (2019). In situ immobilization of heavy metals in contaminated sediments by composite additives of hydroxyapatite and oxides. Environmental Earth Sciences, 78, 94. DOI: 10.1007/s12665-019-8085-7.10.1007/s12665-019-8085-7 Search in Google Scholar

Zhang, D., Ding, A., Li, T., Wu, X., Liu, Y., Naidu, R. (2021). Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar. Journal of Soils and Sediments, 21, 2262-2272. DOI: 10.1007/s11368-021-02928-9.10.1007/s11368-021-02928-9 Search in Google Scholar

Zhang, Y., Wang, J., Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284. DOI: 10.1016/j.catena.2021.105284.10.1016/j.catena.2021.105284 Search in Google Scholar

Zhu, X., Li, J., Luo, J., Jin, Y., & Zheng, D. (2016). Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. Journal of the Taiwan Institute of Chemical Engineers, 70, 200-208. DOI: 10.1016/j.jtice.2016.10.049.10.1016/j.jtice.2016.10.049 Search in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other