Open Access

Energy Performance of Higher Education Institutions Buildings Operating During Quarantine Restrictions and/or Martial Law in Ukraine


Cite

Yoshino, H., Hong, T., & Nord, N. (2017). IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build, 152. DOI: 10.1016/j.enbuild.2017.07.038.Search in Google Scholar

Deshko, V., Bilous, I., Buyak, N., & Shevchenko, O. (2020). The impact of energy-efficient heating modes on human body exergy consumption in public buildings. In ESS 2020 – Proceedings. 12–14 May 2020, Kyiv, Ukraine. DOI: 10.1109/ESS50319.2020.9160270.Search in Google Scholar

Upitis, M., Amolina, I., Geipele, I., & Zeltins, N. (2020). Measures to Achieve the Energy Efficiency Improvement Targets in the Multi-Apartment Residential Sector. Latvian Journal of Physics and Technical Sciences, 57 (6), 41–52. DOI: 10.2478/lpts-2020-0032.Search in Google Scholar

Aliero, M. S., Pasha, M. F., Smith, D. T., Ghani, I., Asif, M., Jeong, S. R., & Samuel, M. (2022). Non-Intrusive Room Occupancy Prediction Performance Analysis Using Different Machine Learning Techniques. Energies (Basel), 15 (23), 9231. DOI: 10.3390/en15239231.Search in Google Scholar

Saraiva, T. S., de Almeida, M., Bragança, L., & Barbosa, M. T. (2018). Environmental Comfort Indicators for School Buildings in Sustainability Assessment Tools. Sustainability (Switzerland), 10 (6), 1849. DOI: 10.3390/su10061849.Search in Google Scholar

Katić, D., Krstić, H., & Marenjak, S. (2021). Energy Performance of School Buildings by Construction Periods in Federation of Bosnia and Herzegovina. Buildings, 11 (2), 42. DOI: 10.3390/buildings11020042.Search in Google Scholar

He, Z., Hong, T., & Chou, S. K. (2021). A Framework for Estimating the Energy- Saving Potential of Occupant Behaviour Improvement. Appl. Energy, 287 (1), 116591. DOI: 10.1016/j.apenergy.2021.116591.Search in Google Scholar

Laaroussi, Y., Bahrar, M. Elmankibi, M., Draoui, A., & Si-Larbi, A. (2019). Occupant behaviour: A major issue for building energy performance. In IOP Conference Series: Materials Science and Engineering, 609, 072050. DOI: 10.1088/1757-899X/609/7/072050.Search in Google Scholar

Deshko, V., Bilous, I., & Boiko, T. (2022). Influence of Heating and Ventilation Modes on the Energy Consumption of University Educational Buildings under Quarantine Conditions in Ukraine. Journal of New Technologies in Environmental Science, 6 (1), 36–40.Search in Google Scholar

Alghamdi, S., Tang, W., Kanjanabootra, S., & Alterman, D. (2022). Effect of Architectural Building Design Parameters on Thermal Comfort and Energy Consumption in Higher Education Buildings. Buildings, 12 (3), 329. DOI: 10.3390/buildings12030329.Search in Google Scholar

Sadowska, B., Piotrowska-Woroniak, J., Woroniak, G., & Sarosiek, W. (2022). Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study. Energies (Basel), 15 (8), 2886. DOI: 10.3390/en15082886.Search in Google Scholar

Jia, L. R., Han, J., Chen, X., Li, Q. Y., Lee, C. C., & Fung, Y. H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11 (12), 591. DOI: 10.3390/buildings11120591.Search in Google Scholar

Sun, C., & Zhai, Z. (2020). The Efficacy of Social Distance and Ventilation Effectiveness in Preventing COVID-19 Transmission. Sustain Cities Soc., 62. doi: 10.1016/j.scs.2020.102390.Open DOISearch in Google Scholar

Franco, A., Bartoli, C., Conti, P., Miserocchi, L., & Testi, D. (2021). Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings. Energies (Basel), 14 (10), 2847. DOI: 10.3390/en14102847.Search in Google Scholar

Ivanko, D., Ding, Y., & Nord, N. (2021). Analysis of Heat Use Profiles in Norwegian Educational Institutions in Conditions of COVID-Lockdown. Journal of Building Engineering, 43. DOI: 10.1016/j. jobe.2021.102576.Search in Google Scholar

Bahmanyar, A., Estebsari, A., & Ernst, D. (2020). The Impact of Different COVID-19 Containment Measures on Electricity Consumption in Europe. Energy Res Soc Sci, 68, 101683. DOI: 10.1016/j. erss.2020.101683.Search in Google Scholar

Rolando, D., Pallard, W. M., & Molinari, M. (2022). Long‐Term Evaluation of Comfort, Indoor Air Quality and Energy Performance in Buildings: The Case of the KTH Live‐ In Lab Testbeds. Energies (Basel), 15 (14), 4955. DOI: 10.3390/en15144955.Search in Google Scholar

World Business Council for Sustainable Development. (2019). Transforming the Market: Energy Efficiency in Buildings. Survey Report. Geneva.Search in Google Scholar

Chattopadhyay, K., Garg, V., Paruchuri, P., Mathur, J., & Valluri, S. (2022). Impact of COVID-19 on Energy Consumption in a Residential Complex in Hyderabad, India. Energy Informatics, 5. DOI: 10.1186/s42162-022-00240-5.Search in Google Scholar

Todeschi, V., Javanroodi, K., Castello, R., Mohajeri, N., Mutani, G., & Scartezzini, J. L. (2022). Impact of the COVID-19 Pandemic on the Energy Performance of Residential Neighborhoods and their Occupancy Behaviour. Sustain Cities Soc., 82. DOI: 10.1016/j.scs.2022.103896.Search in Google Scholar

Tleuken, A., Tokazhanov, G., Serikbay, A.-B., Zhalgasbayev, K., Guney, M., Turkyilmaz, A., & Karaca, F. (2021). Household Water and Energy Consumption Changes during COVID-19 Pandemic Lockdowns: Cases of the Kazakhstani Cities of Almaty, Shymkent, and Atyrau. Buildings, 11 (12), 663. DOI: 10.3390/buildings11120663.Search in Google Scholar

Deshko, V., Bilous, I., Sukhodub, I., & Yatsenko, O. (2021). Evaluation of Energy Use for Heating in Residential Building under the Influence of Air Exchange Modes. Journal of Building Engineering, 42. DOI: 10.1016/j.jobe.2021.103020.Search in Google Scholar

Deshko, V., Bilous, I., Biriukov, D., & Yatsenko, O. (2021). Transient Energy Models of Housing Facilities Operation. Rocznik Ochrona Srodowiska, 23. DOI: 10.54740/ros.2021.038.Search in Google Scholar

Deshko, V., Bilous, I., Vynogradov-Saltykov, V., Shovkaliuk, M., & Hetmanchuk, H. (2020). Integrated Approaches to Determination of CO2 Concentration and Air Rate Exchange in Educational Institution. Rocznik Ochrona Srodowiska, 22 (1), 82–104.Search in Google Scholar

Verhovna Rada of Ukraine. (2017). Law of Ukraine On Energy Efficiency of Buildings. The Official Bulletin of the Verkhovna Rada, 33, Article 359. Available at https://zakon.rada.gov.ua/laws/show/2118-19?lang=en#Text.Search in Google Scholar

Hong, T., Chen, Y., Belafi, Z., & D’Oca, S. (2018). Occupant Behavior Models: A Critical Review of Implementation and representation approaches in Building Performance Simulation Programs. Building Simulation, 11 (1). DOI: 10.1007/s12273-017-0396-6.Search in Google Scholar

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., … & Glazer, J. (2001). EnergyPlus: Creating a New-Generation Building Energy Simulation Program. Energy Build, 33 (4), 319–333. DOI: 10.1016/S0378-7788(00)00114-6.Search in Google Scholar

U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). (n.d.). EnergyPlus. Available at https://energyplus.net/Search in Google Scholar

Minbud Ukrainy. (2021). Teplova izoliatsiia ta enerhoefektyvnist budivel, chynnyi vid 2022-09-01, na zaminu DBN V.2.6–31:2016. Vyd. ofits. (pp. 1–27). Ukraine.Search in Google Scholar

Minrehionbud Ukrainy. (2015). Enerhetychna efektyvnist budivel. Metod rozrakhunku enerhospozhyvannia pry opalenni, okholodzhenni, ventyliatsii, osvitlenni ta hariachomu vodopostachanni; chynnyi vid 2016-01-01. Vyd. ofits. (pp. 1–145). Ukraine.Search in Google Scholar

International Weather for Energy Calculations. (n.d.). Available at https://energyplus.net/weather-location/europe_wmo_region_6/UKR.Search in Google Scholar

Ministry of Health of Ukraine. (n.d.). Available at https://covid19.gov.ua/karantynni-zakhody.Search in Google Scholar

Minbud Ukrainy. (2013). DBN V.2.5-67:2013. Opalennia, ventyliatsiia ta kondytsiiuvannia; chynnyi vid 2014–01–01, (pp. 1–149).Search in Google Scholar

Minrehionbud Ukrainy. (2013). DSTU-N B V.1.1–27:2010. Budivelna klimatolohiia; chynnyi vid 2011-11-01, (pp. 1–123).Search in Google Scholar

López-Sosa, L. B., Alvarado-Flores, J. J., del Niño Jesús Marín-Aguilar, T., Corral-Huacuz, J. C., Aguilera-Mandujano, A., Rodríguez-Torres, G. M., … & Ávalos-Rodríguez, M. L. (2021). COVID-19 Pandemic Effect on Energy Consumption in State Universities: Michoacan, Mexico Case Study. Energies, 14 (22), 7642. https://doi.org/10.3390/en14227642.Search in Google Scholar

Ayadi, O., Alnaser, S., Haj-ahmed, M., Khasawneh, H., Althaher, S., Alrbai, M., & Arabiat, M. (2023). Impacts of COVID-19 on Educational Buildings Energy Consumption: Case Study of the University of Jordan. Front Built Environ, 9. DOI: 10.3389/fbuil.2023.1212423.Search in Google Scholar

Agdas, D., & Barooah, P. (2020). Impact of the COVID-19 Pandemic on the U.S. Electricity Demand and Supply: An Early View from Data. IEEE Access, 8, 205034-205050 DOI: 10.1109/ACCESS.2020.3016912.Search in Google Scholar

Valeriy, D., Inna, B., Maryna, S., & Maksym, H. (2020). Evaluation of Differentiated Impact of Apartment Building Occupants’ Behavior on Energy Consumption. 2020 IEEE 7th International Conference on Energy Smart Systems, ESS 2020 – Proceedings, (pp. 196–200). Kyiv, Ukraine, 2020. DOI: 10.1109/ESS50319.2020.9160046.Search in Google Scholar

Deshko, V., Sukhodub, I., & Yatsenko, O. (2018). Building Thermal State and Technical Systems Dynamic Modeling. Journal of New Technologies in Environmental Science, 2, 36–46.Search in Google Scholar

Lebedeva, K., Borodinecs, A., Krumins, A., Tamane, A., & Dzelzitis, E. (2021). Potential of End-User Electricity Peak Load Shift in Latvia. Latvian Journal of Physics and Technical Sciences, 58 (2), 32–44. DOI: 10.2478/lpts-2021-0010.Search in Google Scholar

Savchenko-Pererva, M., Radchuk, O., Rozhkova, L., Barsukova, H., & Savoiskyi, O. (2021). Determining Heat Losses in University Educational Premises and Developing an Algorithm for Implementing Energy-Saving Measures. Eastern-European Journal of Enterprise Technologies, 6 (8(114)), 48–59. DOI: 10.15587/1729-4061.2021.245794.Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics