Open Access

Influence of Surface Waves on Liquid-to-Gas Mass Transfer in Molten Silicon


Cite

International Renewable Energy Agency. (2022). Renewable Power Generation Costs in 2022 (report). ISBN: 978-92-9260-544-5 Search in Google Scholar

Kavlak, G., McNerney, J., & Trancik, J.E. (2018). Evaluating the Causes of Cost Reduction in Photovoltaic Modules. Energy Policy, 123, 700–710. https://doi.org/10.1016/j.enpol.2018.08.015. Search in Google Scholar

Delannoy, Y. (2012). Purification of Silicon for Photovoltaic Applications. Journal of Crystal Growth, 360, 61–67. Search in Google Scholar

Fu, R., James, L. T., & Woodhouse, M. (2015). Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness. IEEE Journal of Photovoltaics, 5 (2), 515–524. Search in Google Scholar

Khattak, C., Joyce, D., & Schmid, F. (2002). A Simple Process to Remove Boron from Metallurgical Grade Silicon. Solar Energy Materials and Solar Cells, 74 (1), 77–89. Search in Google Scholar

Safarian, J., & Tangstad, M. (2012). Kinetics and Mechanism of Phosphorus Removal from Silicon in Vacuum Induction Refining. High Temperature Materials and Processes, 31. 10.1515/htmp.2011.143. Search in Google Scholar

Sortland, Ø., & Tangstad, M. (2014). Boron Removal from Silicon Melts by H2O/H2 Gas Blowing: Mass Transfer in Gas and Melt. Metallurgical and Materials Transactions E, 1 (3), 211–225. Search in Google Scholar

Safarian, J., Thang, K., Hildal, K., & Tranell, G. (2014). Boron Removal from Silicon by Humidified Gases. Metallurgical and Materials Transactions E, 1, 41–47. Search in Google Scholar

Nordstrand, E. F., & Tangstad, M. (2012). Removal of Boron by Moist Hydrogen Gas. Metallurgical Material Transactions B, 43, 814–822. Search in Google Scholar

Galpin, J., & Fautrelle, Y. (1992) Liquid-Metal Flows Induced by Low-frequency Alternating Magnetic Fields. Journal of Fluid Mechanics, 239, 383–408. doi:10.1017/S0022112092004452 Search in Google Scholar

Fautrelle, Y., & Sneyd, A.D. (2005). Surface Waves Created by Low-Frequency Magnetic Fields. European Journal of Mechanics – B/Fluids, 24 (1), 91–112. https://doi.org/10.1016/j.euromechflu.2004.05.005 Search in Google Scholar

Kestin, J., & Whitelaw, J.H. (1964). The Viscosity of Dry and Humid Air. International Journal of Heat and Mass Transfer, 7 (11), 1245–1255. https://doi.org/10.1016/0017-9310(64)90066-3 Search in Google Scholar

Yuan, Z., Mukai, K., & Huang, W. (2002). Surface Tension and Its Temperature Coefficient of Molten Silicon at Different Oxygen Potential. Langmuir, 18, 6, 2054–2062. https://doi.org/10.1021/la0112920 Search in Google Scholar

Sato, Y., Nishizuka, T., Hara, K., Yamamura, T., & Waseda Y. (2000). Density Measurement of Molten Silicon by a Pycnometric Method. International Journal of Thermophysics, 21, 1463. https://doi.org/10.1023/A:1006661511770 Search in Google Scholar

Geža, V., & Pavlovs, S. (2020). Numerical Modelling of Boron Removal from Silicon by Oxidizing Gas Jet. Magnetohydrodynamics, 56, 81–91. doi:10.22364/mhd.56.1.8 Search in Google Scholar

Rhim, W.K., & Ohsaka, K. (2000). Thermophysical Properties Measurement of Molten Silicon by High-Temperature Electrostatic Levitator: Density, Volume Expansion, Specific Heat Capacity, Emissivity, Surface Tension and Viscosity. Journal of Crystal Growth, 208 (1–4), 313–321. https://doi.org/10.1016/S0022-0248(99)00437-6 Search in Google Scholar

Guevara, F. A., McInteer, B. B., & Wageman, W. E. (1969). High‐Temperature Viscosity Ratios for Hydrogen, Helium, Argon, and Nitrogen. The Physics of Fluids, 12 (12), 2493–2505. Search in Google Scholar

Marrero, T.R., & Mason, E.A. (1973). Correlation and Prediction of Gaseous Diffusion Coefficients. AIChE J., 19, 498–503. doi:10.1002/aic.690190312 Search in Google Scholar

Sortland, O.S. (2015). Boron Removal from Silicon by Steam and Hydrogen. PhD Thesis. Trondheim: Norwegian University of Science and Technology. Search in Google Scholar

Khanjian, A., Habchi, C., Russeil, S., Bougeard, D., & Lemenand, T. (2018). Effect of the Angle of Attack of a Rectangular Wing on the Heat Transfer Enhancement in Channel Flow at Low Reynolds Number. Heat Mass Transfer, 54, 1441. https://doi.org/10.1007/s00231-017-2244-8 Search in Google Scholar

Dellil, A.Z., Azzi, A., & Jubran, B.A. (2004). Turbulent Flow and Convective Heat Transfer in a Wavy Wall Channel. Heat Mass Transfer, 40, 793. https://doi.org/10.1007/s00231-003-0474-4 Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics