Cite

Aasberg-Petersen, K., Bak Hansen, J.-H., Christensen, T.S., Dybkjaer, I., Seier Christensen, P., Stub Nielsen, C., & Winter, S.E.L. (2001). Technologies for Large-Scale Gas Conversion. Applied Catalysis A: General, 221 (1), 379–387. https://doi.org/10.1016/S0926-860X(01)00811-0. Search in Google Scholar

Bolívar Caballero, J.J., Zaini, I.N., & Yang, W. (2022). Reforming Processes for Syngas Production: A Mini-Review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels. Applications in Energy and Combustion Science, 10, 100064. https://doi.org/10.1016/j.jaecs.2022.100064. Search in Google Scholar

Keiski, R. L., Ojala, S., Huuhtanen, M., Kolli, T., & Leiviskä, K. (2011). Partial Oxidation (POX) Processes and Technology for Clean Fuel and Chemical Production. Advances in Clean Hydrocarbon Fuel Processing: Science and Technology, 262–286. https://doi.org/10.1533/9780857093783.3.262. Search in Google Scholar

Lu, X., & Wang, T. (2015). Simulation of Ash Deposition Behavior in an Entrained Flow Coal Gasifier. International Journal of Clean Coal and Energy, 4, 43–59. https://doi.org/10.4236/ijcce.2015.42005. Search in Google Scholar

Bhuiyan, A.A., & Naser, J. (1015). Modeling of Slagging in Industrial Furnace: A Comprehensive Review. Procedia Engineering, 105, 512–519. http://dx.doi.org/10.1016/j.proeng.2015.05.084. Search in Google Scholar

Christensen, T., & Primdahl, I.I. (1994). Improve Syngas Production Using Autothermal Reforming. Hydrocarbon Processing. Search in Google Scholar

Wang, Y., Gu, M., Wu, J., Cao, L., Lin, Y., & Huang, X. (2021). Formation of Soot Particles in Methane and Ethylene Combustion: A Reactive Molecular Dynamics Study. International Journal of Hydrogen Energy, 46 (73), 36557–36568. https://doi.org/10.1016/j.ijhydene.2021.08.125. Search in Google Scholar

Cañete, B., Gigola, C.E., & Brignole, N.B. (2014). Synthesis Gas Processes for Methanol Production via CH4 Reforming with CO2, H2O, and O2. Industrial & Engineering Chemistry Research, 53 (17), 7103–7112. https://doi.org/10.1021/ie404425e. Search in Google Scholar

Ma, R., Xu, B., & Zhang, X. (2019). Catalytic Partial Oxidation (CPOX) of Natural Gas and Renewable Hydrocarbons/Oxygenated Hydrocarbons—A Review. Catalysis Today, 338, 18–30. https://doi.org/10.1016/j.cattod.2019.06.025. Search in Google Scholar

ANSYS. (n.d.). ANSYS FLUENT 12.0 Theory Guide - 4.11.2 Filtered Navier-Stokes Equations. Available at https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node94.htm Search in Google Scholar

Nicoud, F., & Ducros, F. (1999). Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow, Turbulence and Combustion, 62 (3), 183–200. Search in Google Scholar

Westbrook, C.L., & Dryer, F.L. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combust. Sci. Technol., 27, 31–43. Search in Google Scholar

Bustanmante, F., Enick, R.M., Killmeyer, R.P., Howard, B.H., Rothenberger, K.S., Cugini, A.V., … & Ciocco, M.V. (2005). Uncatalyzed and Well-catalyzed Forward Water-Gas Shift Reaction Kinetics. AIChE J., 51, 1440–1454. Search in Google Scholar

Gomez, M.A., Porteiro, J., Patino, D., & Miguez, J.L. (2014). CFD Modelling of Thermal Conversion and Packed Bed Compaction in Biomass Combustion. Fuel, 117, 716–732. http://dx.doi.org/10.1016/j.fuel.2013.08.078 Search in Google Scholar

Hou, K., & Hughes, R. (2001). The Kinetics of Methane Steam Reforming over a Ni/α-Al2O Catalyst. Chemical Engineering Journal, 82, 311–328. Search in Google Scholar

Openfoam. (n.d.). OpenFOAM v2112. Available at https://www.openfoam.com/news/main-news/openfoam-v2112 Search in Google Scholar

NIST Chemistry WebBook. (n.d.). Thermophysical Properties of Fluid Systems. Available at https://webbook.nist.gov/chemistry/fluid/ Search in Google Scholar

Openfoam. (n.d.). OpenFOAM v10 User Guide - 7.1 Thermophysical Models. Available at https://doc.cfd.direct/openfoam/user-guide-v10/thermophysical Search in Google Scholar

Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., … & Qin, Z. (n.d.) GRI-Mech 3.0. Available: http://combustion.berkeley.edu/gri-mech/version30/text30.html Search in Google Scholar

Cox, K. R., & Chapman, W. G. (2001). The Properties of Gases and Liquids (5th ed.). McGraw-Hill: New York. Search in Google Scholar

Yoshizawa, A. (1986). Statistical Theory for Compressible Turbulent Shear Flows, with the Application to Subgrid Modelling. The Physics of Fluids, 29 (7), 2152–2164. https://doi.org/10.1063/1.865552 Search in Google Scholar

Bellos, V., Nalbantis, I., & Tsakiris, G. (2018). Friction Modeling of Flood Flow Simulations. Journal of Hydraulic Engineering, 144 (12), 04018073. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001540. Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics