Cite

Santos, M. S., Marques Lameirinhas, R. A., N. Torres, J. P., P. Fernandes, J. F., & Correia V. Bernardo, C. P. (2023). Nanostructures for Solar Energy Harvesting. Micromachines, 14, 364. doi:10.3390/mi14020364. Search in Google Scholar

Sidorenko, A. S. (2020). Functional Nanostructures for Electronics, Spintronics and Sensors. Beilstein J. Nanotechnol., 11, 1704–1706. doi: 10.3762/bjnano.11.152. Search in Google Scholar

Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov., 20, 101–124. doi: 10.1038/s41573-020-0090-8. Search in Google Scholar

Arredondo-Ochoa, T., & Silva-Martínez, G. A. (2022). Microemulsion Based Nanostructures for Drug Delivery. Front. Nanotechnol., 3, 753947. doi: 10.3389/fnano.2021.753947. Search in Google Scholar

Gautam, Y. K., Sharma, K., Tyagi, S., Ambedkar, A. K., Chaudhary, M., & Pal Singh, B. (2021). Nanostructured Metal Oxide Semiconductor-Based Sensors for Greenhouse Gas Detection: Progress and Challenges. R. Soc. Open Sci., 8, 201324. doi: 10.1098/rsos.201324. Search in Google Scholar

Gorup, L. F., Sequinel, T., Akucevicius, G. W., Pinto, A. H., Biasotto, G., Ramesar, N., de Arruda, E., G., R., … & Camargo, E. R. (2021). Nanostructured Gas Sensors in Smart Manufacturing. Nanosensors for Smart Manufacturing, Elsevier, 445–485. doi.org/10.1016/B978-0-12-823358-0.00022-8. Search in Google Scholar

Chowdhury, N. K., & Bhowmik, B. (2021). Micro/Nanostructured Gas Sensors: The Physics behind the Nanostructure Growth, Sensing and Selectivity Mechanisms. Nanoscale Adv., 3, 73–93. doi: 10.1039/d0na00552e. Search in Google Scholar

Karabulut, G., Beköz Üllen, N., & Karakuş, S. (2022). Nanostructures in Biosensors: Development and Applications. Biomedical Engineering. IntechOpen. doi: 10.5772/intechopen.108508. Search in Google Scholar

Varnakavi Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel), 21 (4), 1109. doi: 10.3390/s21041109. Search in Google Scholar

Bertel, L., Miranda, D. A., & García-Martín, J. M. (2021). Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing. Sensors, 21, 6167. doi: 10.3390/s21186167. Search in Google Scholar

Nagal, V., Masrat, S., Khan, M., Alam, S., Ahmad, A.; Alshammari, M. B., ... & Ahmad, R. (2023). Highly Sensitive Electrochemical Non-Enzymatic Uric Acid Sensor Based on Cobalt Oxide Puffy Balls-like Nanostructure. Biosensors, 13, 375. doi: 10.3390/bios13030375. Search in Google Scholar

Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Review—Nanostructured Materials-Based Nanosensors. J. Electrochem. Soc., 167, 037554. doi: 10.1149/1945-7111/ab67aa. Search in Google Scholar

Macagnano, A., & Avossa, J. (2020). Chapter 11 – Nanostructured composite materials for advanced chemical sensors. In Advances in Nanostructured Materials and Nanopatterning Technologies: Applications for Healthcare, Environment and Energy, Elsevier, (pp. 297–332). doi: 10.1016/b978-0-12-816865-3.00011-1. Search in Google Scholar

Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., … & Plaksenkova, I. (2021). Nanostructure-Based Electrochemical Sensor: Glyphosate Detection and the Analysis of Genetic Changes in Rye DNA. Surfaces and Interfaces, 26, 101332. doi: 10.1016/j.surfin.2021.101332. Search in Google Scholar

Nagal, V., Tuba, T., Kumar, V., Alam, S., Ahmad, A., Alshammari, M. B., … & Ahmad, R. (2022). A Non-enzymatic Electrochemical Sensor Composed of Nano-berry Shaped Cobalt Oxide Nanostructures on a Glassy Carbon Electrode for Uric Acid Detection. New J. Chem., 46, 12333–12341. doi: 10.1039/D2NJ01961B. Search in Google Scholar

Fall, B., Sall, D. D., Hémadi, M., Diaw, A. K. D., Fall, M., Randriamahazaka, H., & Thomas, S. (2023). Highly Efficient Nonenzymatic Electrochemical Glucose Sensor Based on Carbon Nanotubes Functionalized by Molybdenum Disulfide and Decorated with Nickel Nanoparticles (GCE/CNT/MoS2/NiNPs). Sens. Actuat. Rep., 5, 100136. doi: 10.1016/j.snr.2022.100136. Search in Google Scholar

Singer, N., Pillai, R. G., Johnson, A. I. D., Harris, K. D., & Jemere, A. B. (2020). Nanostructured Nickel Oxide Electrodes for Non-enzymatic Electrochemical Glucose Sensing. Microchimica Acta, 187 (4), 187–196. doi: 10.1007/s00604-020-4171-5. Search in Google Scholar

Echarri-Giacchi, M., & Martín-Martínez J. M. (2022). Efficient Physical Mixing of Small Amounts of Nanosilica Dispersion and Waterborne Polyurethane by Using Mild Stirring Conditions. Polymers, 14(23), 5136. doi: 10.3390/polym14235136. Search in Google Scholar

Liao, M.-J., & Duan, L.-Q. (2020). Dependencies of Surface Condensation on the Wettability and Nanostructure Size Differences. Nanomaterials (Basel)., 10 (9), 1831. doi: 10.3390/nano10091831. Search in Google Scholar

Shen, J.-F., Wu, C.-M., Mo, D.-M., & Lio, Y.-R. (2023). Molecular Investigation on the Formation and Transition of Condensation Mode on the Surface with Nanostructure. J. Mol. Liq., 369, 120848. doi: 10.1016/j. molliq.2022.120848. Search in Google Scholar

Jinming Liu, J., He, S.- H., & Wang, J.- P. (2020). High-Yield Gas-Phase Condensation Synthesis of Nanoparticles to Enable a Wide Array of Applications. ACS Appl. Nano Mater., 3 (8), 7942–7949. doi:10.1021/acsanm.0c01400. Search in Google Scholar

Parauha, Y. R., Sahu, V., & Dhoble, S. J. (2021). Prospective of Combustion Method for Preparation of Nanomaterials: A Challenge. Mater. Sci. Eng.: B, 267, 115054. doi: 10.1016/j.mseb.2021.115054. Search in Google Scholar

Wahyudiono, Kondo, H., Yamada, M., Takada, N., Machmudah, S., Kanda, H., & Goto, M. (2020). DC-Plasma over Aqueous Solution for the Synthesis of Titanium Dioxide Nanoparticles under Pressurized Argon. ACS Omega, 5 (10), 5443–5451. doi: 10.1021/acsomega.0c00059. Search in Google Scholar

Li, Z., Coll, M., Mundet, B., Chamorro, N., Vallès, F., Palau, A., Gazquez, J., ... & Obradors, X. (2019). Control of Nanostructure and Pinning Properties in Solution Deposited YBa2Cu3O7−x Nanocomposites with Preformed Perovskite Nanoparticles. Sci. Rep., 9 (1), 5828. doi: 10.1038/s41598-019-42291-x. Search in Google Scholar

Gan, Y. X., Jayatissa, A. H., Yu, Z., Chen, X., & Li, M. (2020). Hydrothermal Synthesis of Nanomaterials. J. Nanomater., 2020, 8917013. doi: 10.1155/2020/8917013. Search in Google Scholar

Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., ... & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng., 2021, 5102014. doi: 10.1155/2021/5102014. Search in Google Scholar

Navas, D., Fuentes, S., Castro-Alvarez, A., & Chavez-Angel, E. (2021). Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels, 7, 275. doi: 10.3390/gels7040275. Search in Google Scholar

Yarbrough, R., Davis, K., Dawood, S., & Rathnayake, H. (2020). A Sol–Gel Synthesis to Prepare Size and Shape-Controlled Mesoporous Nanostructures of Binary (II–VI) Metal Oxides. RSC Adv., 10, 14134–14146. doi: 10.1039/D0RA01778G. Search in Google Scholar

Domonkos, M., & Kromka, A. (2022). Nanosphere Lithography-Based Fabrication of Spherical Nanostructures and Verification of Their Hexagonal Symmetries by Image Analysis. Symmetry, 14, 2642. doi: 10.3390/sym14122642. Search in Google Scholar

Jang, H.-I., Yoon, H.-S., Lee, T.-I., Lee, S., Kim, T.-S., Shim, J., & Park, J. H. (2020). Creation of Curved Nanostructures Using Soft-Materials-Derived Lithography. Nanomaterials, 10 (12), 2414. doi: 10.3390/nano10122414. Search in Google Scholar

Qu, J., Yang, W., Wu, T., Ren, W., Huang, J., Yu, H., … & CairneyJ. M. (2022). Atom Probe Specimen Preparation Methods for Nanoparticles. Ultramicroscopy, 233, 113420. doi: 10.1016/j. ultramic.2021.113420. Search in Google Scholar

Shahzad, S., Javed, S., & Usman, M. (2021). A Review on Synthesis and Optoelectronic Applications of Nanostructured ZnO. Front. Mater., 8, 613825. doi: 10.3389/fmats.2021.613825. Search in Google Scholar

Djurišić, A. B., Ng, A. M. C., & Chen, X. (2010). ZnO Nanostructures for Optoelectronics: Material Properties and Device Application. Progress in Quantum Electronics, 34 (4), 191–259. doi:10.1016/j. pquantelec.2010.04.001. Search in Google Scholar

Jiang, J., Pi, J., & Cai, J. (2018). The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl., 2018, 1062562. doi: 10.1155/2018/1062562. Search in Google Scholar

Barman, A. (2015). Review on biocompatibility of ZnO nano particles. In Gupta, S., Bag, S., Ganguly, K., Sarkar, I., Biswas, P. (eds.) Advancements of Medical Electronics. Lecture Notes in Bioengineering. (pp. 343–352). Springer, New Delhi. doi: 10.1007/978-81-322-2256-9_32. Search in Google Scholar

Oleshko, O., Husak, Y., Korniienko, V., Pshenychnyi, R., Varava, Y., Kalinkevich, O., ... & Pogorielov, M. (2020). Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy. Nanomaterials (Basel), 10 (12), 2401. doi:10.3390/nano10122401. Search in Google Scholar

Krishna, M. S., Sing, S., Batool, M., Fahmy, H. M., Seku, K., Shalan, A. E., … & Zafar, M. N. (2023). A Review on 2D-ZnO Nanostructure Based Biosensors: From Materials to Devices. Mater. Adv., 4, 320–354. doi: 10.1039/d2ma00878e. Search in Google Scholar

Yang, G., & Park, S.-J. (2019). Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials (Basel), 12 (7), 1177. doi:10.3390/ma12071177. Search in Google Scholar

Adeleye, A. T., John, K. I., Adeleye, P. G., Akande, A. A., & Banjoko, O. O. (2021). One-dimensional Titanate Nanotube Materials: Heterogeneous Solid Catalysts for Sustainable Synthesis of Biofuel Precursors/Value-Added Chemicals – A Review. J. Mater. Sci., 56 (5), 18391–18416. doi: 10.1007/s10853-021-06473-1. Search in Google Scholar

Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm, 22, 1346–1358. doi:10.1039/C9CE01556F. Search in Google Scholar

Xu, S., Lao, C., Weintraub, B., & Wang, Z. L. (2008). Density-Controlled Growth of Aligned ZnO Nanowire Arrays by Seedless Chemical Approach on Smooth Surfaces. J. Mater. Res., 23 (08), 2072–2077. doi:10.1557/jmr.2008.0274. Search in Google Scholar

Krasovska, M., Gerbreders, V., Paskevics, V., Ogurcovs, A., & Mihailova, I. (2015). Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method. Latvian Journal of Physics and Technical Sciences, 52 (5), 28–40. doi:10.1515/lpts-2015-0026. Search in Google Scholar

Gerbreders, V., Krasovska, M., Mihailova, I., Sledevskis, E., Ogurcovs, A., Tamanis, E., … & Mizers, V. (2022). Morphology Influence on Wettability and Wetting Dynamics of ZnO Nanostructure Arrays. Latvian Journal of Physics and Technical Sciences, 59 (1), 30–43. doi: 10.2478/lpts-2022-0004. Search in Google Scholar

Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., …& Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 23, 100276. doi: 10.1016/j.sbsr.2019.100276. Search in Google Scholar

Schürch, P., Osenberg, D., Testa, P., Bürki, G., Schwiedrzik, J., Michler, J., & Koelmans, W. W. (2023). Direct 3D Microprinting of Highly Conductive Gold Structures via Localized Electrodeposition. Materials & Design, 227, 111780. doi: 10.1016/j.matdes.2023.111780. Search in Google Scholar

Muldoon, K., Song, Y., Ahmad, Z., Chen, X., & Chang, M.-W. (2022). High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. Micromachines (Basel), 13 (4), 642. doi: 10.3390/mi13040642. Search in Google Scholar

Tsangarides, C. T., Ma, H., & Nathan, A. (2016). ZnO Nanowire Array Growth on Precisely Controlled Patterns of Inkjet-Printed Zinc Acetate at Low-Temperatures. Nanoscale, 8, 11760–11765. doi: 10.1039/c6nr02962k. Search in Google Scholar

Wang, X., Sun, F., Huang, Y., Duan, Y., & Yin, Z. (2015). Patterned ZnO Nanorod Array/Gas Sensor by Mechanoelectrospinning-Assisted Selective Growth. ChemComm, 51 (15), 3117–3120. doi:10.1039/c4cc08876j. Search in Google Scholar

Lee, D., Tang, Y.-L., & Liu, S.-J. (2021). Fast Fabrication of Nanostructured Films Using Nanocolloid Lithography and UV Soft Mold Roller Embossing: Effects of Processing Parameters. Polymers, 13 (3), 405. doi:10.3390/polym13030405. Search in Google Scholar

Lee, Y. H., Ke, K. C., Chang, N.W. & Yang, S. Y. (2018). Development of an UV Rolling System for Fabrication of Micro/Nano Structure on Polymeric Films Using a Gas-Roller-Sustained Seamless PDMS Mold. Microsyst. Technol., 24 (7), 2941–2948. doi:10.1007/s00542-017-3683-3. Search in Google Scholar

Fung, C. M., Lloyd, J. S., Samavat, S., Deganello, D., & Tenga, K. S. (2017). Facile Fabrication of Electrochemical ZnO Nanowire Glucose Biosensorusing Roll to Roll Printing Technique. Sens. Actuat. B: Chem., 247, 807–813. doi: 10.1016/j. snb.2017.03.105. Search in Google Scholar

Kim, S., Sojoudi, H., Zhao, H., Mariappan, D., McKinley, G. H., Gleason, K. K., & Hart, A. J. (2016). Ultrathin High-Resolution Flexographic Printing Using Nanoporous Stamps. Sci Adv., 2 (12), e1601660. doi: 10.1126/sciadv.1601660. Search in Google Scholar

Kim, M., Oh, D., Kim, J., Jeong, M., Kim, H., Jung, C., ... & Ok, J. (2022). Facile Fabrication of Stretchable Photonic Ag Nanostructures by Soft-Contact Patterning of Ionic Ag Solution Coatings. Nanophotonics, 11 (11), 2693–2700. doi: 10.1515/nanoph-2021-0812. Search in Google Scholar

Donie, Y. J., Yuan, Y., Allegro, I., Schackmar, F., Hossain, I. M., Huber, R., ... & Lemmer, U. (2022). A Self-Assembly Method for Tunable and Scalable Nano-Stamps: A Versatile Approach for Imprinting Nanostructures. Adv. Mater. Technol., 7 (6), 2101008. doi: 10.1002/admt.202101008. Search in Google Scholar

Taus, P., Prinz, A., Wanzenboeck, H. D., Schuller, P., Tsenov, A., Schinnerl, M., … & Muehlberger, M. (2021). Mastering of NIL Stamps with Undercut T-Shaped Features from Single Layer to Multilayer Stamps. Nanomaterials, 11, 956. doi: 10.3390/nano11040956. Search in Google Scholar

Liu, Z., Liu, N., & Schroers, J. (2022). Nanofabrication through Molding. Progress Mater. Sci., 125, 100891. doi: 10.1016/j. pmatsci.2021.100891. Search in Google Scholar

Kang, H. W., Yeo, J., Hwang, J. O., Hong, S., Lee, P., Han, S. Y., … & Sung,H. J. (2011). Simple ZnO Nanowires Patterned Growth by Microcontact Printing for High Performance Field Emission Device. J. Phys. Chem. C, 115 (23), 11435–11441. doi:10.1021/jp2019044. Search in Google Scholar

Chakraborty, A., Orsini, A., Kar, J. P., Gatta, F., Khan, U., & Falconi, C. (2022). Ultra-efficient Thermo-convective Solution-Growth of Vertically Aligned ZnO Nanowires. Nano Energy, 97, 107167. doi: 10.1016/j.nanoen.2022.107167. Search in Google Scholar

Simon Xia, S., Mostafavi, M., Alghazali, T., Sajad sadi, Guerrero, J. W. G., Suksatan, W., … & Khan, A. (2022). Numerical Investigation of Nanofluid Mixed Convection in a T-shaped Cavity by Considering a Thermal Barrier. Alexandria Eng. J., 61 (9), 7393–7415. doi: 10.1016/j.aej.2022.01.009. Search in Google Scholar

Ko, S. H., Lee, D., Hotz, N., Yeo, J., Hong, S., Nam, K. H., & Grigoropoulos, C. P. (2011). Digital Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Nanoparticle Seeds on a Flexible Substrate. Langmuir, 28 (10), 4787–4792. doi:10.1021/la203781x. Search in Google Scholar

Šimáková, P., Kočišová, E., & Procházka, M. (2021). “Coffee Ring” Effect of Ag Colloidal Nanoparticles Dried on Glass: Impact to Surface-Enhanced Raman Scattering (SERS). J. Nanomater., 2021, 4009352. doi: 10.1155/2021/4009352. Search in Google Scholar

Sliz, R., Czajkowski, J., & Fabritius, T. (2020). Taming the Coffee Ring Effect – Enhanced Thermal Control as Method for Thin-Films Nanopatterning. Langmuir, 36 (32), 9562–9570. doi:10.1021/acs. langmuir.0c01560. Search in Google Scholar

Kwon, J., Hong, S., Lee, H., Yeo, J., Lee, S. S., & Ko, S. H. (2013). Direct Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Zinc Acetate Precursor on a Heated Substrate. Nanoscale Res. Lett., 8 (1), 489. doi.: 10.1186/1556-276X-8-489. Search in Google Scholar

Hong, S., Yeo, J., Manorotkul, W., Kang, H. W., Lee, J., Han, S., … & Ko, S. H. (2013). Digital Selective Growth of a ZnO Nanowire Array by Large Scale Laser Decomposition of Zinc Acetate. Nanoscale, 5 (9), 3698–3703. doi: 10.1039/c3nr34346d. Search in Google Scholar

Guo, X. D., Pi, H. Y., Zhao, Q. Z., & Li, R. X. (2012). Controllable Growth of Flowerlike ZnO Nanostructures by Combining Laser Direct Writing and Hydrothermal Synthesis. Mater. Lett., 66, 377–381. doi: 10.1016/j. matlet.2011.09.008. Search in Google Scholar

Hong, S., Yeo, J., Manorotkul, W., Kim, G., Kwon, J., An, K., & Ko, S. H. (2013). Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth. J. Nanomater., 2013, 246328. doi:10.1155/2013/246328. Search in Google Scholar

In, J. B., Kwon, H.-J., Lee, D., Ko, S. H., & Grigoropoulos, C. P. (2013). In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics. Small, 10 (4), 741–749. doi:10.1002/smll.201301599. Search in Google Scholar

Liu, W. L., Chang, Y. C., Hsieh, S. H., & Chen,W. J. (2013). Effects of Anions in Electrodeposition Baths on Morphologies of Zinc Oxide Thin Films. Int. J. Electrochem. Sci., 8 (1), 983–990. http://www.electrochemsci.org/papers/vol8/80100983.pdf Search in Google Scholar

Jiangfeng, G., Zhaoming, D., Qingping, D., Yuan,X., & Weihua, Z. (2010). Controlled Synthesis of ZnO Nanostructures by Electrodeposition Method. J. Nanomater., 2010, 740628. doi: 10.1155/2010/740628. Search in Google Scholar

Lin, Y., Yang, J., & Zhou, X. (2011). Controlled Synthesis of Oriented ZnO Nanorod Arrays by Seed-Layer-Free Electrochemical Deposition. Appl. Surface Sci., 258 (4), 1491–1494. doi: 10.1016/j. apsusc.2011.09.113. Search in Google Scholar

Sun, S., Jiao, S., Zhang, K., Wang, D., Gao, S., Li, H., … & Zhao, L. (2012). Nucleation Effect and Growth Mechanism of ZnO Nanostructures Electrodeposition from Aqueous Zinc Nitrate Baths. J. Crystal Growth, 359, 15–19. doi: 10.1016/j. jcrysgro.2012.08.016. Search in Google Scholar

Xu, L., Guo, Y., Liao, Q., Zhang, J., & Xu, D. (2005). Morphological Control of ZnO Nanostructures by Electrodeposition. J. Phys. Chem. B, 109 (28), 13519–13522. doi: 10.1021/jp051007b. Search in Google Scholar

Skompska, M., & Zarębska, K. (2014). Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substrates – A Review. Electrochim. Acta, 127, 467–488. doi: 10.1016/j.electacta.2014.02.049. Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics