Cite

Bhatia, R., & Bhatia, S. (2020). Responsiveness of FWM with Fraction of Planck HOD Parameters in Presence of Intensity Dependent Phase Matching Factor in Optical Transmission. International Conference on Intelligent Engineering and Management (ICIEM), 142–147. https://doi.org/10.1109/ICIEM48762.2020.9160075. Search in Google Scholar

Olonkins, S., Spolitis, S., Lyashuk, I., & Bobrovs, V. (2014). Cost Effective WDM-AON with Multicarrier Source Based on Dual-Pump FOPA. In 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), (pp. 23–28). October 2014, Russia. Search in Google Scholar

Ivaniga, P., & Ivaniga, T. (2020). Mitigation of Non-Linear Four-Wave Mixing Phenomenon in a Fully Optical Communication System. Telkomnika, 18, 2878–2885. http://dx.doi.org/10.12928/telkomnika.v18i6.16136. Search in Google Scholar

Keiser, G. (2008). Optical Fibre Communications (4th ed.). Tata McGrawHill Publishing Co. Ltd. Search in Google Scholar

Sharma, N., Singh, H., & Singh, P. (2020). Mitigation of FWM in the Fibre Optic DWDM System by using Different Modulation Tech-niques and Optical Filters. 5th International Conference on Communication and Electronics Systems (ICCES), (pp. 343–348). Coimbatore, India, 2020. https://doi.org/10.1109/ICCES48766.2020.9138080. Search in Google Scholar

Selvamani, A., & Sabapathi, T. (2011). Suppression of Four Wave Mixing by Optical Phase Conjugation in DWDM Fibre Optic Link. Electronics and Control Engineering, 2011, 95–99. 10.1109/ICONRAEeCE.2011.6129821. Search in Google Scholar

Anashkina, E.A., Marisova, M.P., Andrianov, A.V., Akhmedzhanov, R.A., Murnieks, R., Tokman, M.D., … & Bobrovs, V. (2020). Microsphere-Based Optical Frequency Comb Generator for 200 GHz Spaced WDM Data Transmission System. Photonics, 7 (72), 1–16. https://doi.org/10.3390/photonics7030072. Search in Google Scholar

Lin, G., Diallo, S., & Chembo Y. K. (2015). Optical Kerr frequency combs: Towards versatile spectral ranges and applications. In 17th International Conference on Transparent Optical Networks (ICTON), (pp. 1–4). Budapest, 2015. DOI: 10.1109/ICTON.2015.7193612. Search in Google Scholar

Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., & Kippenberg, T. J. (2007). Optical Frequency Comb Generation from a Monolithic Microresonator. Nature, 450, 1214–1217. https://doi.org/10.1038/nature06401. Search in Google Scholar

Liopis, O., Merrer, P. H., Bouchier, A., Saleh, K., & Cibiel, G. (2010). High-Q Optical Resonators: Characterization and Application to Stabilization of Lasers and High Spectral Purity Oscillators. Proceeding of SPIE, (pp. 10). San Francisco, 2010. https://doi.org/10.1117/12.847164. Search in Google Scholar

Liang, W., Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Seidel, D., & Maleki, L. (2011). Generation of Near-Infrared Frequency Combs from a MgF2 Whispering Gallery Mode Resonator. Opt. Lett., 36. https://doi.org/10.1364/OL.36.002290. Search in Google Scholar

Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Solomatine, I., Seidel, D., & Maleki, L. (2008). Optical Combs with a Crystalline Whispering Gallery Mode Resonator. Phys. Rev. Lett., 101, 093902. https://doi.org/10.1103/PhysRevLett.101.093902. Search in Google Scholar

Savchenkov, A. A., Matsko, A. B., & Maleki, L. (2016). On Frequency Combs in Monolithic Resonators. Nanophotonics, 5, 363–391. https://doi.org/10.1515/nanoph-2016-0031. Search in Google Scholar

Braunfelds, J., Murnieks, R., Salgals, T., Brice, I., Sharashidze, T., Lyashuk, I., … & Bobrovs, V. (2020). Frequency Comb Generation in WGM Microsphere Based Generators for Telecommunication Applications. Quantum Electronics, 50, 1043. https://doi.org/10.1070/QEL17409. Search in Google Scholar

Anashkina, E.A., & Andrianov, A.V. (2021). Kerr-Raman Optical Frequency Combs in Silica Microsphere Pumped near Zero Dispersion Wavelength. IEEE Access, 9, 6729–6734. https://doi.org/10.1109/ACCESS.2021.3049183. Search in Google Scholar

Andrianov, A.V., & Anashkina, E.A. Single-Mode Silica Microsphere Raman Laser Tunable in the U-Band and beyond. Results Phys., 17, 103084, 1–5. https://doi.org/10.1016/j.rinp.2020.103084. Search in Google Scholar

Antikainen, A., & Agrawal, G. P. (2015). Dual-Pump Frequency Comb Generation in Normally Dispersive Optical Fibres. J. Opt. Soc. Am. B, 32, 1705–1711. https://doi.org/10.1364/JOSAB.32.001705. Search in Google Scholar

Myslivets, E., Kuo, B. P., Alic, N., & Radic, S. (2012). Generation of Wideband Frequency Combs by Continuous-Wave Seeding of Multi-Stage Mixers with Synthesized Dispersion. Opt. Express, 20, 3331–3344. https://doi.org/10.1364/OE.20.003331. Search in Google Scholar

Hänsel, W., Hoogland, H., Giunta, M., Schmid, S., Steinmetz, T., Doubek, R., … & Holzwarth R. (2017). All Polarization-Maintaining Fibre Laser Architecture for Robust Femtosecond Pulse Generation. Appl. Phys. B, 123, 1–6. https://doi.org/10.1007/s00340-016-6598-2. Search in Google Scholar

Ataie, V., Myslivets, E., Kuo, B. P.-P., Alic, N., & Radic, S. (2014). Spectrally Equalized Frequency Comb Generation in Multistage Parametric Mixer with Nonlinear Pulse Shaping. J. Light. Technol., 32, 840–846. https://doi.org/10.1109/JLT.2013.2287852. Search in Google Scholar

ITU-T Recommendation G 694.1. (2002). Spectral Grids for WDM Applications: DWDM Frequency Grid. International Telecommunication Union, Telecommunication standardization sector of ITU, pp. 1–7, Geneva, Switzerland,. Search in Google Scholar

Bohnert, K., Frank, A., Yang, L., Gu, X., & Müller, G. M. (2019). Polarimetric Fibre-Optic Current Sensor With Integrated-Optic Polarization Splitter. J. Light. Technol., 37, 3672–3678. https://doi.org/10.1109/JLT.2019.2919387. Search in Google Scholar

Giurgiutiu, V. (2018). Comprehensive Composite Materials. II Elsevier. ISBN 9780081005347. Search in Google Scholar

McKnight, M., Agcayazi, T., Ghosh, T., & Bozkurt, A. (2018). Wearable Technology in Medicine and Health Care. Academic Press. ISBN 9780128118108. Search in Google Scholar

Giurgiutiu, V. (2020). Composites Science and Engineering, Polymer Composites in the Aerospace Industry (2nd ed.). Woodhead Publishing. ISBN 9780081026793. Search in Google Scholar

Senkans, U., Braunfelds, J., Lyashuk, I., Porins, J., Spolitis, S., & Bobrovs, V. (2019). Research on FBG-Based Sensor Networks and Their Coexistence with Fibre Optical Transmission Systems. Journal of Sensors, 2019, 1–13. https://doi.org/10.1155/2019/6459387. Search in Google Scholar

Kim, M.H., & Lee, J.M. (2014). Woodhead Publishing Series in Electronic and Optical Materials, Sensor Technologies for Civil Infrastructures. Woodhead Publishing, 56. ISBN 9781782422426. Search in Google Scholar

Hayes, S.A., Swait, T.J., & Lafferty, A.D. (2015). Composites Science and Engineering, Recent Advances in Smart Self-healing Polymers and Composites. Woodhead Publishing. ISBN 9781782422808. Search in Google Scholar

Braunfelds, J., Senkans, U., Skels, P., Janeliukstis, R., Salgals, T., Redka, D., … & Bobrovs, V. (2021). FBG-Based Sensing for Structural Health Monitoring of Road Infrastructure. Journal of Sensors, 1–11. https://doi.org/10.1155/2021/8850368. Search in Google Scholar

Alamandala, S., Sai Prasad, R.L.N., Pancharathi, R., Pavan, V.D.R., & Kishore, P. (2021). Study on Bridge Weigh in Motion (BWIM) System for Measuring the Vehicle Parameters Based on Strain Measurement Using FBG Sensors. Opt. Fibre Technol., 61, 102440, 1–9. https://doi.org/10.1016/j.yofte.2020.102440. Search in Google Scholar

Taheri, S. (2019). A Review on Five Key Sensors for Monitoring of Concrete Structures. Construction and Building Materials, 204, 492–509. https://doi.org/10.1016/j.conbuildmat.2019.01.172. Search in Google Scholar

Peters, K.J., & Inaudi, D. (2014). Electronic and Optical Materials, Sensor Technologies for Civil Infrastructures. Woodhead Publishing, 55. ISBN 9780857094322. Search in Google Scholar

Ansari, F. (2009). Civil and Structural Engineering, Structural Health Monitoring of Civil Infrastructure Systems. Woodhead Publishing, ISBN 9781845693923. Search in Google Scholar

Baldwin, C. (2018). 8-Fibre Optic Sensors in the Oil and Gas Industry: Current and Future Applications. Opto-Mechanical Fibre Optic Sensors, Butterworth-Heinemann. ISBN 9780128031315. Search in Google Scholar

Vadgama, P. (2001). Biomedical Sensors: Materials. Encyclopedia of Materials: Science and Technology, Elsevier. ISBN 9780080431529. Search in Google Scholar

Tosi, D., Poeggel, S., Iordachita, I., & Schena E. (2018). 11-Fibre Optic Sensors for Biomedical Applications. Opto-Mechanical Fibre Optic Sensors, Butterworth-Heinemann. ISBN 9780128031315. Search in Google Scholar

Broughton, W. (2012). Welding and Other Joining Technologies, Adhesives in Marine Engineering. Woodhead Publishing. ISBN 9781845694524. Search in Google Scholar

Subramanian, R., Zhu, C.L., Zhao, H., & Li, H.P. (2018). Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fibre Gratings. IEEE Photonics Technol. Lett., 30, 327–330. https://doi.org/10.1109/LPT.2017.2787157. Search in Google Scholar

Velazquez-Gonzalez, J.S., Monzon-Hernandez, D., Martinez-Pinon, F., & Hernandez-Romano, I. (2017). Simultaneous Measurement of Refractive Index and Temperature Using a SPR-Based Fibre Optic Sensor. Sens. Actuat. B-Chem., 242, 912–920. https://doi.org/10.1016/j.snb.2016.09.164. Search in Google Scholar

Gu, J., Kwon, D., Ahn, J., & Park, I. (2019). Strain sensor based on optical intensity change through the carbon nanotube embedded elastomer. In 20th International Conference on Solid-State Sensors “Actuators and Microsystems & Eurosensors XXXIII” (TRANSDUCERS & EUROSENSORS XXXIII), (pp. 1716–1719). Berlin, Germany, 2019. https://doi.org/10.1109/TRANSDUCERS.2019.8808701. Search in Google Scholar

Madan, A., Liu, O., Jiang, W., Wang, Y., Shum, P. P., & Hao, J. (2020). Carbon-steel tube surface mounted FBG sensors under high-temperature environment, part I: Polyimide coated and femtosecond laser written. In IEEE 5th Optoelectronics Global Conference (OGC), (pp. 125–129). Shenzhen, China, 2020. https://doi.org/10.1109/OGC50007.2020.9260462. Search in Google Scholar

Ran, Z., Liu, S., Liu, Q., Wang, Y., Bao, H., & Rao, Y. (2015). Novel High-Temperature Fibre-Optic Pressure Sensor Based on Etched PCF F-P Interferometer Micromachined by a 157-nm Laser. IEEE Sens. J., 15, 3955–3958. https://doi.org/10.1109/JSEN.2014.2371243. Search in Google Scholar

Khadour, A., &Waeytens, J. (2018). Civil and Structural Engineering, Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures. Woodhead Publishing. ISBN 9780081021811. Search in Google Scholar

Mahawar, N., & Khunteta, A. (2019). Design and performance analysis of WDM optical Communication system with EDFA-DCF and FBG for dispersion compensation using 8x5 Gbps data rate. In International Conference on Communication and Electronics Systems (ICCES), (pp. 431–435). Coimbatore, India, 2019. https://doi.org/10.1109/ICCES45898.2019.9002236. Search in Google Scholar

Götten, M., Lochmann, S., Ahrens, A., Lindner, E., Vlekken, J., & Van Roosbroeck, J. (2020). 4000 Serial FBG Sensors Interrogated with a Hybrid CDM-WDM System. IEEE Sens. J., 2020, 1–4. https://doi.org/10.1109/SENSORS47125.2020.9278764. Search in Google Scholar

Synopsys. (n.d.). Synopsys OptSim Product Overview. Available at https://www.synopsys.com/photonic-solutions/rsoft-system-design-tools/system-network-optsim.html Search in Google Scholar

Xia, L., Cheng, R., Li, W., & Liu, D. (2015). Identical FBG-Based Quasi-Distributed Sensing by Monitoring the Microwave Responses. IEEE Photon. Technol. Lett., 27, 323–325. https://doi.org/10.1109/LPT.2014.2370650. Search in Google Scholar

Dwivedi, K. M., Trivedi, G., & Khijwania, S. K. (2020). Theoretical study and optimization of apodized fibre Bragg grating for single and quasi-distributed structural health monitoring applications. In 30th International Conference Radioelektronika (RADIOELEKTRONIKA), (pp. 1–6). Bratislava, Slovakia, 2020. https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092399. Search in Google Scholar

Moon, H., Kwak, S., Im, K., Kim, J., & Kim, S. (2019). Wavelength Interrogation System for Quasi-Distributed Fibre Bragg Grating Temperature Sensors Based on a 50-GHz Array Waveguide Grating. IEEE Sens. J., 19, 2598–2604. https://doi.org/10.1109/JSEN.2018.2889853. Search in Google Scholar

Bobrovs, V., Spolitis, S., & Ivanovs, G. (2013). Extended Reach Spectrum-Sliced Passive Optical Access Network. International Journal of Physical Sciences, 8 (13), 537–548. https://doi.org/10.5897/IJPS2013.3868. Search in Google Scholar

Tsai, W-S., Lu, H.H., Li, C.-Y., Lu, T.-C., Liao, C.-H., Chu, C.-A., &Peng, P.-C. (2015). A 20-m/40-Gb/s 1550-nm DFB LD-Based FSO Link. IEEE Photonics J., 2015 (7), 1–7, doi: 10.1109/JPHOT.2015.2506172. Search in Google Scholar

Ledentsov, Jr. N., Agustin, M., Chorchos, L., Kropp, J.-R., Shchukin, V. A., Kalosha, V. P., … & Ledentsov, N. N. (2019). Energy Efficient 850-nm VCSEL Based Optical Transmitter and Receiver Link Capable of 56 Gbit/s NRZ Operation. Vertical-Cavity Surface-Emitting Lasers XXIII, 109380J, 1–8. https://doi.org/10.1117/12.2509916. Search in Google Scholar

Elayoubi, K., Rissons, A., & Belmonte, A. (2018). Optical Test Bench Experiments for 1-Tb/s Satellite Feeder Uplinks. Laser Communication and Propagation through the Atmosphere and Oceans VII, 1077006, 1–11. https://doi.org/10.1117/12.2317728 Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics