Open Access

Methodological Approaches to the Design of a Mobile Test Facility Simulating the Outer Space


Cite

1. Kravchenko, S., Panova, N., Kuļešovs, N., Blumbergs, I., & Šestakovs, V. (2020). Analysis of the Technical Implementation Options for Launching a Carrier for Output of Micro Satellites to LEO from an Aircraft Platform (LatLaunch project). In: 61th International Scientific Conference of Riga Technical University (pp. 16–17), 15–16 October, 2020, Riga, Latvia. Search in Google Scholar

2. Young, D. A., & Olds, J. R. (2021). Responsive Access Small Cargo Affordable Launch (RASCAL) Independent Performance Evaluation. Available at https://www.semanticscholar.org/paper/Responsive-Access-Small-Cargo-Affordable-Launch-Yo Search in Google Scholar

3. ASTM International. (2019). Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. ASTM C177-19 standard. Search in Google Scholar

4. European Committee for Standardization (2001). Thermal Performance of Building Materials and Products - Determination of Thermal Resistance by means of Guarded Hot Plate and Heat Flow Meter Methods - Products of High and Medium Thermal Resistance. EN 12667:2001 standard. Search in Google Scholar

5. Irimex. (n.d.). Mobile Test Stand PV 1236. Available at https://www.irimex.ru/services/catalog/armatura/rubric_501/rubric_510/product_1651/ Search in Google Scholar

6. RTU. (n.d.). Metamorphosis Project. Available at https://www.rtu.lv/lv/universitate/projekti/atvert?project_number=4127 Search in Google Scholar

7. Cryogenic and Vacuum Systems Ld. (n.d.) Brief Entity Description. Available at https://www.izm.gov.lv/sites/izm/files/latvian-entries1.pdf Search in Google Scholar

8. Manned Spacecraft Center in Houston, Texas. (n.d.). Available at https://ru.wikipediaий.org/wiki Search in Google Scholar

9. Picryl. (n.d.). NASA Research Center in Ames (Iowa). Available at https://picryl.com/ru/media/arc-1944-a-6245-223a9e] Search in Google Scholar

10. ERSTEVAK. (n.d.). Space Simulators. Available at https://erstvak.com/catalog/vakuumnaya-sistema-ustanovka/imitatorkosmosa/#1 Search in Google Scholar

11. ERSTEVAK. (n.d.). Vacuum System. Space Simulators. Available at https://erstvak.com/catalog/vakuumnaya-sistemaustanovka/imitator-kosmosa/ Search in Google Scholar

12. Chisabas, R.S.S., Loureiro, G., & de Oliveira Lino, C. (2018). Space Thermal and Vacuum Environment Simulation. Space Flight. DOI: 10.5772/intechopen.7315410.5772/intechopen.73154 Search in Google Scholar

13. Vactime. (n.d.). What is a Thermo-Vacuum Chamber? Available at https://vactime.net/articles/post/chto-takoe-termovakuumnayakamera-ili-kamera-glubokogo-vakuuma-ikak-ona-rabotaet Search in Google Scholar

14. Butkevich, I. K. (2008). Cryogenic Systems and Installations. M.: Publishing Press of BMSTU (in Russian). Search in Google Scholar

15. Kravchenko, S., Panova, N., Kuļešovs, N., & Šestakovs, V. (2020). Methodology of Hydraulic Calculation of Space Simulators’ Cryogenic Systems that was Tested within the Project “Cryogenic Insulation Thermal Conductivity Testing System”. In: 61th International Scientific Conference of Riga Technical University (pp. 17–17), 16–17 October, 2020, Riga, Latvia. Search in Google Scholar

16. BLMS. (n.d.). Space Simulators. Available at https://blms.ru/space Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics